HEAT TREATMENT STUDIES OF Nb3Sn WIRES FOR SUPERCONDUCTING PLANAR UNDULATORS

E. Barzi, D. Turrioni, A.V. Zlobin (FNAL), Y. Ivanyushenkov, M. Kasa, I. Kesgin (ANL)

Abstract

An ANL APS group and the FNAL High Field Magnet team paired forces to develop a double undulator of 2.8 m total length made of Nb₃Sn, to be installed in the APS storage ring. In addition to providing a larger temperature margin than NbTi, Nb3Sn undulators are expected to increase the magnetic field in the electron beam aperture by 50%.

STRAND PARAMETERS

150/169 and 144/169 RRP® wires.

Table 1: STRAND PARAMETERS

Strand ID	RRP1	RRP2
Stack design	150/169	144/169
Ternary element	Ti	Ti
Production year	2018	2019
Diameter d, mm	0.601	0.602
I_c (4.2K, 12 T), A	345 ± 2	$336 \pm 3^*$
J_c (4.2K, 12 T), A/mm ²	$2,426 \pm 7$	$2,499 \pm 23^*$
D_S , μ m	35	35
Twist pitch, mm	14.5 ± 0.4	16
Cu fraction λ, %	50 ± 0.1	52.4
RRR	93 ± 11	143 ± 11
Final HT step	650°C/50 h	640°C/50 h

Sample heat Treatment

Short model SMM5 in reaction fixture.

Table 2: HEAT TREATMENT SCHEDULES

	STEP 1		STEP 2		STEP 3	
Coil	Temp,°C	Time,HR	Temp,°C	Time,HR	Temp,°C	Time,HR
SMM4	209 ± 1	48	369 ± 2	104	651 ± 1	50
SMM5	210 ± 1	48	369 ± 2	104	650 ± 1	50
SMM6	210 ± 1	48	371 ± 1	104	650 ± 1	50
IMM1*	210	48	370	104	650	50
STUDY	210 ± 2	48	401 ± 1	48	649 ± 1	50

Table 3: RESULT SUMMARY

Coil	Wire	AVE. I _C (12 T), A	AVE. RRR	COIL RRR	SSL, A
SMM4	RRP1	332 ± 2	87 ± 2	51	1220
SMM5	RRP1	336 ± 1	73 ± 2	51	1231
SMM6	RRP2	324 ± 6	54 ± 2	52	1132
IMM1	RRP2	368	74		1213
STUDY	RRP1	288 ±6	92 ± 5	-	1183*
· ·	RRP2	279 ± 4	55 ± 3	-	1114

RESULTS AND DISCUSSION

CONCLUSIONS

- ANL and FNAL develop a double undulator of 2.8 m total length made of Nb₃Sn, to be installed in the APS storage ring.
- Of the three phases of this project, the first one was successfully completed. Six short Nb₃Sn models of 4.5 periods length and 10 poles were designed, fabricated and tested.
- For short magnet models SMM2 to SMM6, a non-standard heat treatment was used to increase the expected Jc and also the desired stability behavior in the operation field region.
- The same two Restacked Rod Processed (RRP®) wires that were used in the winding of the short model magnets were studied when subjected to the standard heat treatment.
- Critical current I_c and Residual Resistivity Ratio RRR were measured and compared with those of the witness samples used for short model magnets SMM4, SMM5, and SMM6.
- It was found that whereas the average $I_c(12 T, 4.2 K)$ of the witness samples of all three coils was 16% larger than in the standard heat treatment, their stability behavior was better in the low field region.
- The non-standard heat treatment selected for the undulator small models was therefore most appropriate to achieve the expected short sample limits for these magnets.

