Screen-Current-Induced Nonuniform Strain on REBCO Conductor: An Experimental and Analytical Study with Small Coils Wound with Monofilament and Striated Multifilament REBCO Tape

Yi Li, **Dongkeun Park***, Yoonhyuck Choi, Wooseung Lee,

Hiromi Tanaka, Juan Bascuñàn, and Yukikazu Iwasa

Francis Bitter Magnet Laboratory/Plasma Science and Fusion Center

MIT, Cambridge, MA, USA

MT 26 International Conference on Magnet Technology Vancouver, Canada | 2019

OUTLINE

- Introduction: Mechanism of The Screening-Current-Induced Nonuniform Strain
 along Tape width
- Small-Coil Experiment to Observe and Measure the nonuniform Strain: with Small Coil Wound of Monofilament and Striated Multifilament REBCO Tape
- Numerical Method to Simulate Screening-Current-Induced Nonuniform Strain
- Proposal: Reduction of The Strain Difference by Using <u>Striated Multifilament</u>
 REBCO Conductor

INTRDUCTION

Mechanism of the Screening-Current-Induced Nonuniform Strain

When A REBCO Superconductor Is Exposed to the Magnet Field ...

- The REBCO conductor is $\underline{MAGNETIZED}$ with a close-loop $\underline{SCREENING\ CURRENT}$ induced to screen the perpendicular component B_c of the field;
- The nonuniform current distribution leads to a nonuniform Lorentz force f_L, resulting in a magnetic <u>TORQUE</u> on the conductor;
- In a REBCO <u>MAGNET</u>, nonuniform Lorentz force means a <u>NONUNIFORM HOOP STRAIN</u> on the conductor.

Proposal: Striated Multifilament REBCO Tape To Reduce Strain Nonuniformity

EXPERIMENTAL APPROACH

Excitation of Screening Current with A Background Field

- A small REBCO coil is prepared and inserted into a 5-T background magnet, 100 mm off the center plane.
- A screening current, *i.e.* nonuniform strain, is induced on the REBCO conductor when the background field is applied.

EXPERIMENTAL APPROACH

Small REBCO Test Coils

Designed For Detection

- Small turn number (3) to deepen field penetration
- 150-mm large diameter to increase hoop stress
- 10-mm wide conductor for stronger magnetic torque

REBCO Test Coil

Turn Number 3 turn with REBCO facing inward

Dimension 150-mm Inner Diameter

Insulation 2.5-mil Kapton Co-Wound

Structure Aluminum Bobbin and G10 Plate

Excitation Open Circuit without Input Current

REBCO Conductor

Manufacturer Shanghai Superconductor

Dimension 10-mm Width; 63-µm Thickness

Substrate 50-µm Thick Hastelloy

Stabilizer 2 Layer of 4-µm Thick Copper Plating

Critical Current 370 A @ 77 K, Self-Field

Filament Monofilament and 3-Striate/4-Filament

EXPERIMENTAL APPROACH

Detection of Nonuniform Hoop Strain

Strain Gauges

- Attached on the substrate side of the outmost turn
- 4-mm total width with 2-mm wide effective area
- Half-bridge circuit to detect the nonuniform strain
- Monitored with Micro-Measurement System 8000

Estimated Strain Difference

Using "Half-Bridge" Circuit

$$\Delta \varepsilon_2 - \Delta \varepsilon_1 \sim \frac{4}{GF} \cdot \frac{V_{\rm O}}{V_{\rm EX}}$$

GF: Gauge Factor

NUMERICAL METHOD

Screening Current Analysis with *T-A* Formulation

Strategy of Numerical Simulation

1. Screening Current with T-A Formulation (Time Dependent)

2. Lorentz Force according to the Screening Current

3. Stress and Strain Analysis (Stationary)

T-A Method for 2D-film Conductor

E-J Relationship
$$E_{\phi}(J_{\phi}) = E_0 \left| \frac{J_{\phi}}{J_c} \right|^n \cdot \frac{J_{\phi}}{|J_{\phi}|}$$

T-Formulation
$$J_{\phi} = dT/dz$$

Faraday's Law
$$\frac{\mathrm{d}}{\mathrm{d}z}E_{\phi}(J_{\phi}) = -\frac{\partial B_r}{\partial t}$$

The field B is solved with vector potential A using FEM

Boundary Condition T = 0 (Constant)

Mon-Af-Po1.11-10 [10]

PRILIMENARY TEST

Screening Current Effect Confirmed in Liquid Nitrogen Test

We observed and *CONFIRMED* the screening-current-induced nonuniform strain in the LN₂ test with coil wound of 10-mm monofilament REBCO tape.

- Since this is not the first run, a negative signal is observed due to the dominance of a residual screening current induced in the last run.
- ② The strain difference reached a saturation because of the low J_c @ 77 K in the external field.
- The new screen current induced during ramping down completely overwrote the original one.
- The strain difference vanished with the background field withdrawn.

DETAILED EXPERIMENTAL RESULTS

Coil Wound of *Monofilament* Tape, Tested in Liquid Helium

Mon-Af-Po1.11-10 [10]

Time [min]

Strain Difference

$$\Delta \varepsilon_2 - \Delta \varepsilon_1 \sim \frac{4}{GF} \cdot \frac{V_{\rm O}}{V_{\rm EX}}$$

GF: Gauge Factor

 \bigcirc Noisy signal due to low excitation voltage $V_{\rm EX}$

LIYI2017@MIT.EDU

DETAILED EXPERIMENTAL RESULTS

Coil Wound of 3-Striate/4-Filament Tape, Tested in Liquid Helium

Strain Difference

$$\Delta \varepsilon_2 - \Delta \varepsilon_1 \sim \frac{4}{GF} \cdot \frac{V_{\rm O}}{V_{\rm EX}}$$

GF: Gauge Factor

COMPARISON AND DISCUSSION

Mono-Filament vs 3-Striate/4-Filament, Experiment vs Simulation

CONCLUSION

- Screening Current Not Only Cause Field Distortion, But Also Unexpected <u>Nonuniform Strain</u> along the width of REBCO Conductor;
- Screening Current Induced Nonuniform Strain Observed in Small Coil Test;
- Numerical Simulation of Screening Current Induced Nonuniform Strain Matched Experiment Well in When Deformation Is Small;
- <u>Striated Multifilament</u> REBCO Conductor to Effectively Reduce Strain Differences along Tape Width.

You may find more information from the listed presentation:

<u>Thu-Af-Or23-01</u>: Construction and Test Results of a Cryogen-Free 23.5-T REBCO Magnet Prototype towards a Tabletop 1-GHz Micro-coil NMR Magnet

THANK YOU FOR WATCHING!

Shall you have any comments or questions, please do not hesitate to contact me!

Email: LIYI2017@MIT.EDU