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Expansion of magnetic fields in toroidal harmonics
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Summary — Toroidal magnetic configurations are widely exploited in industry and scientific research, involving a vast spectrum of applications, such as thermonuclear fusion, particle detectors, SMES systems and medical
devices. To properly design and analyse these systems, it is crucial to determine the magnetic field generated by different configurations. The multipole expansion theory can be applied to the analysis of toroidal configurations,
by solving the Laplace equation for the magnetic scalar potential in toroidal coordinates. Contrarily to the case of accelerator magnets with straight axis, in this case the correlation between the current distribution and the field
harmonics cannot easily be identified. This paper proposes a methodology for the computation of field harmonics in toroidal coordinates, which is validated by comparison with the results obtained through the Biot-Savart law.
This work was carried out in the frame of the GaToroid project [1] undergoing at CERN.

Multipole Expansion in Toroidal Coordinates

The most suitable coordinate system for the multipole expansion
in toroidal harmonics is the Toroidal Coordinate System (¢, 7,
¢), obtained by rotating the two dimensional Bipolar Coordinate
System (¢, 1) around the axis which separates the foci F, and F,.
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—0 < &< —  «radiusy

0<n<2m — «poloidal angle»

0<¢p<2mr — «toroidal angle»

The procedure followed for the evaluation of the field harmonics i1s
based on the Laplace equation_solution for the magnetic scalar
potential 1, in toroidal coordinates.

H = — Vy  Boundary conditions: void toroidal chamber, finite value
) for any & 1nside the torus, periodicity along ¢,
Vay =0 periodicity along 1

M N
(1. $) + \/cosh(@) — cos() Y, Y Q,f,l_%(cosh(f))OS(n¢)COS(mn)

m=0 n=0

os(n¢)sin(mn) sin(ngb)cos(mn) sin(ngb)sin(mn)]

(Number of coils)(Current in each coil)

e Ideal contribution: M g) 0— 27

known a priori, removed to improve the

computation accuracy: Y* = — M (?0

 Multipolar coefficients: Mgy, M5 n, Marn, Minn
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Computation of the magnetic scalar potential

The scalar potential i at each point of the
reference grid 1s computed as the sum of
the contributions of all coils. The
computation 1s based on the solid angles
methodology [2], through an analytical
approach which 1s applied to a
discretization of each coil.
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T'he red points represent the reference grid.
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Procedure for the Multipolar Coefficients Evaluation

The multipolar coefficients are computed from the magnetic scalar potential at a fixed radial
coordinate ¢ = ¢, for L values of the poloidal angle n and S values of the toroidal angle ¢.

Fitting »+=¢ » =y, =215,
Phase 1 wheres=0,1,...,5-1
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Fitting ¢=¢,n,=2n/l/L,
Phase 2 where/=0,1,..,L—1

M
D, (&y, ;) = v/ cosh(&,) — cos(r;) X Q:l_ ; (cosh(&p)) os(mm;) + in(mm)]

The mitial fitting phase 1 provides as an output the values of the coefficients Cn (¢, n;) and
Dn (&, ny), whereas phase 2 provides the values of the coefficients
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Validation and results

Analyzed configurations:

A) 16 circular coils. B) 16 circular coils with grading (4 coils 1n each section, 64 1n total). C) 16

GaToroid coils.

TABLEI
CONFIGURATIONS PARAMETERS

Parameter Case A Case B Case C
Number of coils 16 16 16
Number of coils per section 1 4 1
Current in each coil [A] 1000 1000 1000
Toroid major radius [m] 125 0 -
Toroid minor radius [m] 0.5 0 -
Reference grid major radius [m] k25 1925 125
Reference grid minor radius [m] 0.1 0.05 0.05
Index m 0:10 0:20 0:30
Index n 0:80 0:96 U:112

The computed multipolar coefficients were used
to determine the magnetic field components 1n
toroidal coordinates.

The procedure was validated by comparison with
magnetic field computations based on the Biot-
Savart law.
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Magnetic tield component Hy, in Case A, at

fixed n = 0.6 rad; maximum relative error
1.4x107> %.

A fine discretization of each coil 1s required to
reach a high computation accuracy.
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The system periodicity with 16 coils is clearly
identified by the computed multipolar
components (case A).
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Coefficients of the multipolar expansion in

toroidal coordinates for Case A



