
Dn(ξ0, ηl) = cosh(ξ0) − cos(ηl) ×
M
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ψ*(ξ0, ηl, ϕ) =
N

∑
n = 0

(Cn (ξ0, ηl)cos(n ϕ) + Dn (ξ0, ηl)sin(n ϕ))
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Summary – Toroidal magnetic configurations are widely exploited in industry and scientific research, involving a vast spectrum of applications, such as thermonuclear fusion, particle detectors, SMES systems and medical
devices. To properly design and analyse these systems, it is crucial to determine the magnetic field generated by different configurations. The multipole expansion theory can be applied to the analysis of toroidal configurations,
by solving the Laplace equation for the magnetic scalar potential in toroidal coordinates. Contrarily to the case of accelerator magnets with straight axis, in this case the correlation between the current distribution and the field
harmonics cannot easily be identified. This paper proposes a methodology for the computation of field harmonics in toroidal coordinates, which is validated by comparison with the results obtained through the Biot-Savart law.
This work was carried out in the frame of the GaToroid project [1] undergoing at CERN.

Multipole Expansion in Toroidal Coordinates

The most suitable coordinate system for the multipole expansion
in toroidal harmonics is the Toroidal Coordinate System (𝜉, 𝜂,
𝜙), obtained by rotating the two dimensional Bipolar Coordinate
System (𝜉, 𝜂) around the axis which separates the foci F1 and F2.

−∞ < 𝜉 < ∞

0 ≤ 𝜂 ≤ 2𝜋

0 ≤ 𝜙 ≤ 2𝜋

«radius»

«poloidal angle»

«toroidal angle»

The procedure followed for the evaluation of the field harmonics is
based on the Laplace equation solution for the magnetic scalar
potential 𝜓, in toroidal coordinates.

Boundary conditions: void toroidal chamber, finite value
for any ξ inside the torus, periodicity along 𝜙,
periodicity along η

ψ(ξ, η, ϕ) = Mϕ
00ϕ + cosh(ξ) − cos(η)

M

∑
m= 0

N

∑
n= 0

Qn
m− 1

2
(cosh(ξ))[Mcc

m,ncos(nϕ)cos(mη)

+ Mcs
m,ncos(nϕ)sin(mη) + Msc

m,nsin(nϕ)cos(mη) + Mss
m,nsin(nϕ)sin(mη)]
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Procedure for the Multipolar Coefficients Evaluation
The multipolar coefficients are computed from the magnetic scalar potential at a fixed radial
coordinate ξ = ξ0, for L values of the poloidal angle η and S values of the toroidal angle f.

ξ = ξ0, ηl = 2p l/L,
where l = 0, 1, ..., L − 1

Dn(ξ0, ηl) = cosh(ξ0) − cos(ηl) ×
M

∑
m= 0

Qn
m− 1

2
(cosh(ξ0))[Msc

m,ncos(mηl) + Mss
m,nsin(mηl)]

Validation and results

References

The computed multipolar coefficients were used
to determine the magnetic field components in
toroidal coordinates.
The procedure was validated by comparison with
magnetic field computations based on the Biot-
Savart law.

known a priori, removed to improve the 
computation accuracy: 𝜓∗ = 𝜓 −𝑀--

. 𝜙

H = − ∇ψ
∇2ψ = 0

Analyzed configurations:
A) 16 circular coils. B) 16 circular coils with grading (4 coils in each section, 64 in total). C) 16
GaToroid coils.

Magnetic field component H𝜙 in Case A, at 
fixed h = 0.6 rad; maximum relative error 

1.4×10MN %. 

Computation of the magnetic scalar potential

The scalar potential 𝜓 at each point of the
reference grid is computed as the sum of
the contributions of all coils. The
computation is based on the solid angles
methodology [2], through an analytical
approach which is applied to a
discretization of each coil.

With ideal contribution Without ideal contribution

ξ = ξ0, η = ηl ,fs=2p s/S,
where s = 0, 1, ..., S – 1

[1] L. Bottura, “A Gantry and apparatus for focussing beams of charged particles ,” Patent, EP 18173426.0., May 2018
[2] S. Russenschuck, Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization, Wiley‐VCH Verlag GmbH & Co, 2011

The red points represent the reference grid.

The system periodicity with 16 coils is clearly 
identified by the computed multipolar 
components (case A).

A fine discretization of each coil is required to 
reach a high computation accuracy.

Fitting 
Phase 1

Fitting 
Phase 2

The initial fitting phase 1 provides as an output the values of the coefficients Cn (x0, hl) and
Dn (x0, hl), whereas phase 2 provides the values of the coefficients and .
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Figure 10: Circular current loop with observation point on the loop axis.

Figure 11: Percentage error variation with the increasing of the discretization
N✓.
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