Study on Analysis Method of Asymmetric Permanent Manget Assistance Synchronous

Reluctance Motor Considering Magnetic Neutral Plane Shift

University of Hanyang, 222, Wangsimni-ro, Seongdong-gu, Seoul, South Korea

Background

This paper establishes an analysis method of permanent magnet assistant synchronous motor (PMA SynRM) with asymmetric barrier. In a general motor analysis method, the inductance is calculated using the $d q$-axis vector diagram. In addition, the characteristics of the motor are analyzed by separating the magnetic torque and the reluctance torque. However, in an asymmetric motor, the magnetic neutral plane (MNP) is shifted because the magnetic permeance is asymmetric. Therefore, it is difficult to analysis the characteristic of the asymmetric motor because it involves errors applying the general analysis method. In this paper, the magnetic property of the asymmetric motor is analyzed and the analysis method of asymmetric motor is proposed. To verify the proposed analysis method, PMA SynRM is designed as a conventional model. Furthermore, the magnetic torque and reluctance torque are separated through the proposed analysis method. The validity of the proposed analysis method is verified through finite element analysis (FEA) and manufacture of the conventional model.

Conclusion

- The asymmetric motor have the shift of mangetic netural plane shift, so the error occur using the conventional mathematical model Therefore, we propose the analysis method of asymmetric motor through the proposed mathematical model.
In order to verify the proposed mathematical model, we design the PMA SynRM
\div The MNP is shifted in PMA SynRM with asymmetric barrier because the permanence of motor is asymmetric * Therefore, we propose the mathematical model considering the shift of MNP.
$\$$ As the result, the analysis result and FEA result are the same.
The asymmetric motor with the shift of MNP should be analysis considering the shift of MNP

$$
\begin{aligned}
& * \text { In the asymmetric model, the MNP is shifted because the magnetic permeance is } \\
& \text { asymmetric. } \\
& * \text { Therefore, the error occurs in asymmetric motor applying the conventional method. } \\
& * \text { Fig 4. shows the shift of MNP }
\end{aligned}
$$

Fig 4. Flux line of analysis models (a) conventional model (b) asymmetric model

Proposed Mathematical Model

$*$ The analysis result and FEA result are the same using proposed mathematical model.

\rightarrow Magnetic Torque - -Reluctance Torque * Total Torque

