

Flux Pumps

Superconducting Wireless Power

Superconducting Power Switches

James Gawith

University of Cambridge Electrical Power and Energy Conversion Group

Flux Pumps

- Wireless power supplies for superconducting magnets
- Provide thermal,
 mechanical, electrical
 isolation of magnet
- No high-current DC supply or current leads required

University of Cambridge/NHMFL Application: High Field Magnets

University of CambridgeApplication: Compact MRI

Victoria University Wellington
Application: Rotating Machines

'Transformer-Rectifier' Flux Pump

- Normal to HTS transformer -> HTS rectifier -> Load magnet
- SPICE simulation developed for optimisation
- Key components are <u>superconducting switches</u>

HTS AC Field Switch

- Off-state by dynamic resistance
- Does not exceed J_C, T_C, or B_C
- 100A I_C to 9m Ω off-state with 2cm² active material
- <10ms transition times

Switch Characteristic at 8.8kHz, 50mT

HTS Power Electronics?

• Semiconductors dominate currently

 HTS competitive at high current and low voltage/frequency

- Widen applicability
 - Improve materials
 - Improve design
 - Explore **actuation** methods

Thanks for Listening!

Contact:

James Gawith jddg2@cam.ac.uk

PhD Funding:

Cambridge Trust Woolf Fisher Trust Fitzwilliam College

Talk later this morning:

Wed-Mo-Or12 - Flux Pump and Cryostats

Cambridge EPEC Superconductivity Group Supervised by Dr Tim Coombs

