TMC - A low-cost high-field conductor

B. Seeber

TMC and superconductivity

TMC = **T**ernary **M**olybdenum **C**halcogenide

PbMo₆S₈

T_c ≤ 15 K

 $B_{c2}(4.2 \text{ K}) \sim 51 \text{ T}$

TMC - history

1st stage: monofilamentary wire

Extrusion billet: OD 50 mm, length 100 mm (~ 1.5 kg)

Powder in tube process - PIT

Manufactured on industrial fabrication line for Mo wires

 \sim 1 km with OD = 0.4 mm

R. Grill et al. Proc. Plansee Seminar 1989

TMC - critical current density

J_c in the superconductor cross section of a TMC (PMS) wire

Granular superconductor

Wet sand model system illustrated by X-ray tomography

M. Scheel et al., Nature Materials, March 2008

Critical current is restricted at grain boundaries:

- Reduced contact area
- Locally reduced T_c and B_{c2}
 (uncontrolled grain boundary diffusion)

New manufacturing process

Granted patents: US 10128428 (Nov. 2018) EP 3105799 (Sep. 2019)

100% dense TMC bulk material

New manufacturing process

Granted patents: US 10128428 (Nov. 2018)

EP 3105799 (Sep. 2019)

No reaction heat treatment!

Conductor price

L. Cooley et al., SUST - 2005

Conductor price

Raw materials price x Production scaling factor P

Cost for raw materials - TMC bulk

PbMo₆S₈ (PMS) bulk material (batch of 50 kg)

Constituent	Purity (%)	Price (\$/kg)
Pb granulate	99.9	57
Mo powder	> 99.95	77
S powder	99.5	30
PbMo ₆ S ₈		61

Conductor layout

Conductor price

Conductor price = raw materials price x production scaling factor P

Superconductor	Raw materials (\$/kg)	Р	Conductor price (\$/kg)
TMC (PMS)	49 - 98 ^a	3.3	160 - 325ª
NbTi (LHC dipole)	61 ^b	3.3	201 ^b
N ₃ Sn (ITER poloidal)	120 ^b	7.8	940 ^c

a) Data for a multifilamentary TMC superconductor (MRI - HEP)

c) Data from Fusion4Energy, Barcelona

b) Data from L. Cooley et al. (SUST 2005) + inflation per CPI 2019

Performance index

https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots - April 2018

$$$/kAm = (\frac{\rho}{J_{eng}}) \times $/kg$$

NbTi-LHC (R=1.8) 8.0 195 Nb ₃ Sn-ITER (R=1) 9.1 940 Bi2212 (R=4) 8.6 10'360 _{70\$/m} ReBCO 8.9 8'220 _{88\$/m} - 13'890 _{50\$/m}	Superconductor	g/cm ³	\$/kg
	Nb ₃ Sn-ITER (R=1) Bi2212 (R=4)	9.1 8.6	940

TMC (MRI - HEP)*

7.2 - 8.C

160 - 325

*Production scaling factor = 3.3

R = stabilizer area / non-stabilizer area

* D. Larbalestier et al., MT25, 2017

Timescale

Immediate

- Identify industrial wire manufacturer

Three to four years

- TMC bulk material with small T_c distribution
- Multifilamentary wire > 1 km length
- Critical current density as forecasted or better
- TMC wire commercially available

Conclusions

- TMC may be considered as "NbTi for high fields"
- Magnet winding like NbTi (limited by bending strain)
- Cost efficient, starting above 5 T
- New manufacturing process ready for licensing (eventually for purchase)

