S. Levonian, December 14, 2009

Luminosity Measurements at LHeC

■ Mission

- Challenges
- Suitable processes
- Possible options

■ Conclusions

(Only RR option is discussed here)

Mission

- optimisation and tuning of ep-collisions

$$
d L_{s t a t}=1 \% / \text { sec }, \text { overall scale } \sim 5 \% \text { is Ok } \Rightarrow 20 \mathrm{kHz}
$$

- mid-term variations of instantanious L

$$
d L_{\text {stat }}=1 \% \text { per run }(10 \mathrm{~min}-\text { few hours }) \quad \Rightarrow 20 \mathrm{~Hz}
$$

- absolute integrated \mathcal{L} for physics normalization $d L_{t o t}=1-2 \%$ per sample (week-month) $\quad \Rightarrow 0.02 \mathrm{~Hz}$

Challenges for RR option

- crossing angle at IP
- large SR flux

IR Layout

Challenges for RR option

- crossing angle at IP
- large SR flux
(LR option with head-on collisions is more similar to HERA, except of horizontal vs vertical $\gamma_{B H}-p$ separation)

IR Layout

Processess

B-H process: $\sigma(E>10)=95 \mathrm{mb}$ (poles in both e^{*} and γ^{*} propagators)

B-H with "internal conversion"

$$
\sigma \simeq 1 / 200 \sigma_{B H}
$$

QED Compton: $\sigma\left(\theta<179^{\circ}\right)=6 \mathrm{nb}$ (poles in γ^{*} propagator, but large e^{*} mass)

Processess

B-H process: $\sigma(E>10)=95 \mathrm{mb}$ (poles in both e^{*} and γ^{*} propagators)

QED Compton: $\sigma\left(\theta<179^{\circ}\right)=6 \mathrm{nb}$ (poles in γ^{*} propagator, but large e^{*} mass)

B-H with "internal conversion"

$$
\sigma \simeq 1 / 200 \sigma_{B H}
$$

(F2 (NC DIS): $\sigma\left(Q^{2}>10\right)=300 \mathrm{nb}$ $\left.\sigma\left(Q^{2}>100\right)=25 \mathrm{nb}\right)$

Detector options

- Two setups
$\triangleright 10^{\circ}$ Detector at $L=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad$ (using typical H1 strategy
$\triangleright 1^{o}$ Detector at $L=10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad$ for F2 and QEDC analyses)
- "Crasy" options for the tunnel detectors
\triangleright Hole in magnets for B-H photons (not discussed here)
\triangleright SR absorber with integrated $\mathbf{B H}$ photon counter
\triangleright Electron taggers at $\mathbf{6 m}, 20 \mathrm{~m}$ and $\mathbf{6 0 m}$
- Typical rates and stat.precision
$\triangleright \mathrm{BH}$ photons: $\quad R=1-100 \mathrm{MHz} \quad \Rightarrow 0.1 \% / \mathrm{sec}$
\triangleright BH electrons: $\quad \boldsymbol{R}=0.02-2 \mathrm{MHz} \quad \Rightarrow<1 \% / \mathrm{sec}$
\triangleright positrons from $\mathrm{BH}\left(e^{+} e^{-}\right): \quad \boldsymbol{R}=1-50 \mathrm{kHz} \quad \Rightarrow 3 \% / \mathrm{sec}$
$\begin{array}{lll}\triangleright \text { F2: } & R=1.5-10 \mathrm{~Hz} & \Rightarrow 1 \% / \text { hour } \\ \triangleright \text { QEDC: } & R=0.015-0.020 \mathrm{~Hz} & \Rightarrow 1-2 \% / \text { week }\end{array}$

Dominant systematics

Method	Stat. error	Syst.error	Syst.error components			Application
BH (γ)	0.1\%/sec	1.5-2.0\%	x-section acceptance, \boldsymbol{A} \boldsymbol{E}-scale, pileup	$\begin{aligned} & = \\ & =10 \%(1 \\ & = \end{aligned}$	$\begin{array}{r} 0.5 \% \\ 1-A) \\ 0.5 \% \end{array}$	Monitoring, tuning, Absolute L, short term variations
BH (e)	1-3\%/sec	$5-6 \%$	x-section acceptance, \boldsymbol{A} background \boldsymbol{E}-scale	$\begin{array}{ll} = & \\ = & 3 \\ = & \\ = & \end{array}$	$\begin{array}{r} 0.5 \% \\ 3-5 \% \\ 1 \% \\ 1 \% \end{array}$	Monitoring, tuning, Relative L
QEDC	1-2\%/week	2\%	x-section (el/inel) acceptance event vertex eff. \boldsymbol{E}-scale	$\begin{aligned} & = \\ & = \\ & = \\ & = \end{aligned}$	$\begin{array}{r} 1.2 \% \\ 1 \% \\ 1 \% \\ 0.3 \% \end{array}$	Absolute \mathcal{L}, Global normalisation
F2	0.5-1.5\%/h	2.5\%	x-section $(\boldsymbol{y}<\mathbf{0 . 6})$ acceptance event vertex eff. \boldsymbol{E}-scale	$\begin{aligned} & = \\ & = \\ & = \\ & = \end{aligned}$	$\begin{array}{r} 2 \% \\ 1 \% \\ 1 \% \\ 0.3 \% \end{array}$	Absolute \mathcal{L} mid. term variations

IP optics for RR option?

Crossing angle 2 mr
Magnetic separation 2 mr
$\rightarrow 60 \mathrm{~mm}$ separation @20m

F.Willeke, May 2008

Crossing angle 1.5 mr ?
40 mm beam separation at 20 m ?
B. Nagorny / B.Holzer, Sept 2008

BH flux in SR absorber at 22m

- BH spot at the hottest place

Active SR absorber?

- cooling system with $10-15 \mathrm{~cm}$ water bath acting as Čerenkov radiator for BH γ^{\prime} s
- radiation hard, (almost) insensitive to SR

BH flux in SR absorber at 22m

Exact BH counter design and R/O needed
Optimisation of crossing angle might be useful

Acceptance control requires beam tilt monitoring

Options for Electron Taggers

IR Layout

- ET-6m requires some dipole field \Rightarrow not possible for low luminosity setup
- An option: split separator dipole and position ET at $z=12-15 \mathrm{~m}$?

SR ?

Further remarks about Electron Taggers

- e-taggers are also useful to enhance physics programme (tagged photoproduction)
- ET-6m is similar to H1/ZEUS taggers at HERA-2, or BP calorimeter of ZEUS at HERA-1
- Taggers for electrons/positrons with charge opposite to one of \boldsymbol{e}-beam are in better positions for lumi monitoring as compared to "same-charge" taggers (lower off-momentum e-bgr, better SR environment)
- Energy calibration might be a problem (leakage, abs.scale - no $e-\gamma$ coinsidence)
- Reliable geometrical acceptance determination (to $3-5 \%$ precision) requires good knowledge/control of beam optics at IP (tilt, offset of e-trajectory)

Can one rely on Water Čerenkov Counter and e-taggers for online lumi measurement? \Rightarrow Look at HERA experience

Typical HERA2 Luminosity fill

Rates at HERA2 (H1 Lumi system)

Summary

- Precise integrated \mathcal{L} for physics is possible with main Detector (QEDC, F2)
- Fast instantaneous L monitoring is challenging, but few "crasy" options exist
- Further investigations:
\triangleright detailed optics at IP (is crossing angle and mag.separation fixed by now?)
\triangleright more precise SR environment estimate at $6 \mathrm{~m}, 21 \mathrm{~m}$ and 60 m
\triangleright design of "active absorber", including light transmission and readout
\triangleright acceptances of ET at $6 \mathrm{~m}, 20 \mathrm{~m}, 60 \mathrm{~m}$ (optics and apertures)
- Prepare writeup
\triangleright mention here also $e A$ case $\left(L \propto 1 / A, \sigma_{B H} \propto Z^{2} \Rightarrow\right.$ pileup $\left.\propto Z / 2\right)$

