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Ring-Ring

* SPL-Ring

(Only RR option 1s discussed here)



Mission

e optimisation and tuning of ep-collisions
dLsiqt = 1%/ sec, overall scale ~ 5% is Ok = 20 kHz

e mid-term variations of instantanious L
dL . = 1% per run (10 min - few hours) = 20 Hz

e absolute integrated £ for physics normalization
dL;,; = 1 — 2% per sample (week-month) = 0.02 Hz

In the following RR-option with 70 X 7000 GeV? is assumed




Challenges for RR option

e crossing angle at IP

e large SR flux
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Challenges for RR option

e crossing angle at IP (LR option with head-on collisions is more similar to HERA,

e large SR flux except of horizontal vs vertical ygg — p separation)
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Processess
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B-H process: o(E > 10) = 95mb B-H with "internal conversion”
(poles in both e* and ~* propagators) o~ 1/2000py

QED Compton: (0 < 179°) = 6nb
(poles in v* propagator, but large e* mass)
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B-H process: o(E > 10) = 95mb B-H with "internal conversion”
(poles in both e* and ~* propagators) o~ 1/2000py
QED Compton: (0 < 179°) = 6nb (F2 (NC DIS): o(Q?* > 10) = 300nb

(poles in ~* propagator, but large e* mass) o(Q? > 100) = 25nb)



Detector options

e Two setups

> 10° Detector at L = 1033cm™2s~1 (using typical H1 strategy
> 1° Detector at L = 103'cm—2s~! for F2 and QEDC analyses)

e "Crasy” options for the tunnel detectors

> Hole in magnets for B-H photons (not discussed here)
> SR absorber with integrated BH photon counter
> Electron taggers at 6m, 20m and 60m

e Typical rates and stat.precision

> BH photons: R =1 — 100 MHz = 0.1% / sec
> BH electrons: R = 0.02 — 2 MHz = < 1%/ sec
> positrons from BH(ete™): R =1-50kHz = 3%/sec

> F2: R=1.5—10Hz = 1% / hour
> QEDC: R = 0.015 — 0.020 Hz =1 — 2% / week



Dominant systematics

Method Stat. error Syst.error Syst.error components Application
BH () 0.1%/sec 1.5 — 2.0% x-section = 0.5% Monitoring, tuning,
acceptance, A = 10%(1 — A) Absolute L,

E-scale, pileup 0.5% short term variations

BH (e) 1 — 3%/sec 5 — 6% x-section = 0.5% Monitoring, tuning,
acceptance, A = 3 — 5% Relative L
background = 1%
E-scale = 1%

QEDC 1 — 2%/week 2% x-section (el/inel) = 1.2% Absolute L,
acceptance = 1% Global normalisation
event vertex eff. = 1%
E-scale = 0.3%

F2 0.5 — 1.5%/h 2.5% x-section (y < 0.6) = 2% Absolute L,
acceptance = 1% mid. term variations
event vertex eff. = 1%

E-scale = 0.3%




IP optics for RR option?

Crossing angle 2mr Crossing angle 1.5mr ?

Magnetic separation 2mr 40 mm beam separation at 20m?

= 60 mm separation @20m
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BH flux in SR absorber at 22m

Active SR absorber?

e cooling system with 10 — 15cm water bath
acting as Cerenkov radiator for BH ~’s

e radiation hard,
(almost) insensitive to SR

e BH spot at the hottest place

SR absorbers



BH flux in SR absorber at 22m

Exact BH counter design and R/O needed

Optimisation of crossing angle might be useful

I SR absorbers

PM

Acceptance control requires beam tilt monitoring



Options for Electron Taggers

IR Layout
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e An option: split separator dipole
and position ET at z = 12 — 15m ? ~35 Ge




Further remarks about Electron Taggers

e e—taggers are also useful to enhance physics programme (tagged photoproduc-
tion)

e ET-6m 1s similar to HI/ZEUS taggers at HERA-2, or BP calorimeter of ZEUS at
HERA-1

e Taggers for electrons/positrons with charge opposite to one of e—beam are in bet-
ter positions for lumi monitoring as compared to ’same-charge” taggers (lower
off-momentum e-bgr, better SR environment)

e Energy calibration might be a problem (leakage, abs.scale — no e — -~y coinsidence)

e Reliable geometrical acceptance determination (to 3—5% precision) requires good
knowledge/control of beam optics at IP (tilt, offset of e-trajectory)

Can one rely on Water Cerenkov Counter and e-taggers for online lumi measurement?
=> Look at HERA experience



Typical HERA2 Luminosity fill
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Rates at HERA2 (H1 Lumi system)
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e Precise integrated £ for physics is possible with main Detector (QEDC, F2)
e Fast instantaneous L monitoring is challenging, but few “crasy” options exist

e Further investigations:

> detailed optics at IP (is crossing angle and mag.separation fixed by now?)
> more precise SR environment estimate at 6m, 21m and 60m
> design of ’active absorber”, including light transmission and readout

> acceptances of ET at 6m, 20m, 60m (optics and apertures)

e Prepare writeup

> mention here also eA case (L o< 1/A, opyg o< Z? = pileup oc Z/2)



