Background Studies for Higgs production at the LHeC (Update)

Masahiro Kuze
Tokyo Institute of Technology
On behalf of Masaki Ishitsuka,
Kengo Kimura and Junpei Maeda

Reminder: in Divonne 2009

- MadGraph + PYTHIA + PGS detector sim.
- Using inclusive CC (e⁻ p \rightarrow v_e+ jet+X) MC, S(Higgs)/N(CC)= 38.5/3.3 [events for 10fb⁻¹] was obtained after "double B-tag jets" cut. (E_e=140GeV, M_H=115GeV)
- rather promising...

Red: CC

Black: CC+Higgs

Progress since then

- Tried to cross check with Liverpool study (U.Klein)
- $E_e = 150 \text{GeV}$, $M_H = 120 \text{GeV}$ (mass window [80,125])
- Generator-level cuts on jet energy, angle, M_{jj}
- Selection of two jets for making M_{jj} Highest Et \rightarrow Lowest η (also total $E_T > 100 GeV)$
- Instead of inclusive CC ("mono-jet"),
 "dijet" (actually 3-jet, i.e. 3 partons in final state)
 diagrams (~540) were generated by MadGraph

Result: a big surprise!

- S/N = 35.6/235 [events] after "double B-tag jets" cut!
- PYTHIA's QCD radiation and hadronization not enough for all final states?
- Looked at details of dominant sub-processes giving final candidates.

Subprocess cross sections by MadGraph

Large cross section of b c s or b u d 3Jets events.

More than 90% of these processes is single-top production $t^- > W^- b^- -> (c^- s \text{ or } u^- d) b^-$ They are the suspected dijet bg for Higgs search.

Number of events from each process for 10 fb⁻¹

	Higgs event	CC monojet BG	CC "dijet" BG	CC b~jj BG	CC bjj BG	CC b~b j BG	CC b~c~s BG	CC b~u~d BG
All events	2340	5.03e+6	5.49+e5	51700	9430	8540	22300	22300
1Jet B-tag + 80 <m<125 (GeV)</m<125 	175	547	6260	4200	263	213	2060	1900
2Jets B-tag + 80 <m<125 (GeV)</m<125 	47.7	15.7	235	189	27.6	25.2	138	34.2

- Dominant process in the final "dijet" MC is b~ c~ s (c-jet has high B-tag efficiency!)
- 90% of it comes from single-top diagram (cf. p.4)
- It is an electroweak HO diagram, so naturally PYTHIA does not produce it?

Summary

- It could be the S/N shown in Sept. based on inclusive CC is too optimistic.
- Higher order EW diagram, single-top, dominantly contributes to double B-tag Higgs candidates.
- MadGraph picks up b-quark PDF: is it reliable?
- Needs confirmation (Liverpool group!)
- If it is true, further kinematic cuts can be tried to reject top→bW events.

Latest plot: 3-Jet mass

Q2>400GeV2, & y>0.9 & missET>20GeV & NJet(PT>20GeV)>=3 & NJet(tight B-tag &PT>20GeV)>=2

After double B-tag jets, additional jet was searched and Mjj was calculated. Left: 90GeV < Mjj < 120GeV, Right, No Mjj cut was imposed. CC 3jet backgrounds peak at ~160 GeV (m_top?), so Mjjj>200GeV cut seems effective to reduce bg and keep ~half of Higgs events.

— higgs — CC dijet BG — CC b~jj BG

