LHeC Detector Working Group: CDR Discussion

Peter Kostka

Alessandro Polini Rainer Wallny

Outline

- Draft Structure
- Detector Design kept
- Some Needs; Status
- WG-Summary Talk Divonne'09 attached

1 Detector Design

- 1.1 Requirements on the Detector
- 1.1.1 Acceptance
- 1.1.2 Resolution and Calibration
- 1.1.3 Particle ID and Tagging
- 1.1.4 Technical Constraints

1.2 Magnet

- 1.2.1 Magnet Concept similar to the CMS
- 1.2.2 Field homogeneity

1.3 Tracker

- 1.3.1 Technical Requirements
- 1.3.2 Tracking Performance
- 1.3.3 Front-end Electronics and Readout
- 1.3.4 Tracker Design Consideration
- 1.3.5 Si-Pixel, -Strip, -Strixel, -Pad Tracker Characteristics
- 1.3.6 Removable fwd/bwd Si-Tracker
- 1.3.7 Material Budget
- 1.4 Electromagnetic Calorimeter
- 1.4.1 Design Considerations
- 1.4.2 Spagetti Calorimeter (H1 type)
- 1.4.3 Calibration and Monitoring
- 1.4.4 Read-Out Electronics
- 1.4.5 Crystal Option of ECal
- 1.4.6 CALICE Type ECal
- 1.4.7 Layout of the ECal Parts

1.5 Hadronic Calorimetry

- 1.5.1 Design Considerations
- 1.5.2 Cu/Brass/Tungsten Calorimeter Spagetti Type
- 1.5.3 Calibration and Monitoring
- 1.5.4 R/O Electronics
- 1.5.5 Crystal option CMS like
- 1.5.6 CALICE Type HaCal
- 1.5.7 Layout of the HCal Parts Kostka, Polini, Wallny

CDR - Topics to be covered

- Detector Concept
 - Dimensions and General Requirements
 - Magnet
 - Tracking
 - Calorimeters

1.6 Muon Detection - Tail Catcher - depend on Magnet Config.

- 1.6.1 Forward Magnetic Spectrometers Toroid
- 1.6.2 Design Considerations
- 1.6.3 Removable fwd/bwd Parts
- 1.7 Beam-Beam Counter Level-0 Trigger
- 1.7.1 Requirements and Detector Configuration
- 1.7.2 Triggering Capabilities, Experiment-Machine Interface
- 1.8 Very Forward Detector in Trigger (proton/neutron tag) chapter 11
- 1.9 Zero Degree Calorimeter ZDC
- 1.9.1 Requirements of ZDC Construction
- 1.9.2 Technical Design
- 1.10 Trigger, DAQ
- 1.10.1 Data Acquisition System and Trigger
- 1.11 Computing
- 1.11.1 Data Processing Model
- 1.11.2 Computer Resources for the Experiment
- 1.12 Integration and Services
- 1.12.1 Hall Facilities and Services
- 1.12.2 Facility Integration
- 1.12.3 Mechanical Integration
- 1.13 Detector Assembly
- 1.13.1 Detector Interface (Machine Interface)
- 1.13.2 Environmental Safety and Health
- 1.13.3 Safety Analysis Issues
- 1.14 Electronics integration
- 1.15 Software Integration
- 1.16 Detector Control System
- 1.16.1 Technical Requirements
- 1.16.2 L1 DCS Architecture
- 1.17 Simulation and Detector Performance
- 1.17.1 Detector Simulation Software Packages
- 1.17.2 Event Reconstruction
- 1.17.3 MC Simulation
- 1.18 Detector Summary

CDR - Topics to be covered 2

- Detector Concept
 - Beam-Beam Counter
 - VeryForwardDetector, Zero Degree Calo
 - Forward Muon Spectrometer
 - Trigger, DAQ, Computing
 - Services, Assembly
 - Electronics/Software Integration, DCS
 - Detector Simulation and Performance

Infrastructure Needs

• Mandatory - minimal requirement:

- ≥ 1 Computer at CERN 1 Server software repository and reference installation
 - + desktop boxes
- accessible for LHeC group apply for registered LHeC group at CERN-IT
- configuration to be defined SL₅ machine

Status

- Collaboration with Ilhan Tapan et.al. (Turkey)
 - Detector geometry being implemented into AliRoot/IlcRoot framework (F.Kosac and A.Kilic);
 - Progress to be organized
 - Essential for detailed simulation
- Needs better information exchange
- Refreshing of collaboration with all experienced ILC/ LHC working groups and with Nikhef group as well

LHeC Detector: version for low x and eA

Muon chambers (fwd, bwd, central)

Coil (r=3m l=11.8m, 3.5T) [Return Fe not drawn, 2 coils w/o return Fe studied]

Central Detector

Pixels Elliptic beam pipe (~3cm - or smaller)

Silicon (fwd/bwd+central) [Strip or/and Gas on Slimmed Si Pixels] [0.6m radius for 0.05% * pt in 3.5T field]

El.magn. Calo (Pb,Scint. 9-12X₀) Hadronic Calo (Fe/LAr; Cu/Brass-Scint. ~30λ)

Fwd Detectors

(down to 1°) Silicon Tracker [Pix/Strip/Strixel/Pad Silicon or/and Gas on Slimmed Si Pixels]

Calice (W/Si); dual ReadOut - Elm Calo FwdHadrCalo:

Cu/Brass-Scintillator

Bwd Detectors

(down to 179°) Silicon Tracker [Pix/Strip/Strixel/Pad Silicon or/and Gas on Slimmed Si Pixels] Cu/Brass-Scintillator, Pb-Scintillator (SpaCal - hadr, elm)

Extensions in fwd direction (tag p,n,d) and backwards (e,γ) under study.

Attachment Summary Talk Divonne '09 (at your convenience)

LHeC Detector Working Group: Summary

Peter Kostka Alessandro Polini Rainer Wallny

Outline

- Detector requirements
- Updated detector design
- Open Questions

ropean Organization for Nuclear Research

CDR - Topics to be covered

- Detector Concept
 - Dimensions and General Requirements (accuracy, acceptance, beam pipe)
 - Coil
 - Calorimeters
 - Tracking (including options as GOSSIP vs. full Silicon)
 - Options for the Inner Detector Region
 - Detector Simulation and Performance

Detector Session

Joint sessions with ACC/IRF and IRF/HPD

Dedicated session:

Contribution List Time Table				
14:00	Wednesday, 02 September 2009 [50] Detector Requirements low x by Paul NEWMAN (Ausone: 14:00 - 14:30)			
15:00	[54] MagCal Concept by Tim GREENSHAW (Ausone: 14:30 - 14:50)			
	[51] Si Gas Detector for Tracking by Henry VAN DER GRAAF (Ausone: 14:50 - 15:30)			
	[52] High Energy Calorimeters for ILCLIC by Christian GREFE (Ausone: 15:30 - 16:00)			
Contribution List Time Table				
16:00	Wednesday, 02 September 2009 [53] Simulation of Detector in GEANT4			
	by Adnan KILIC (Artists: 16:30 - 16:45)			
17:00	[73] Introduction to Current Detector by Peter KOSTKA (Artists: 16:45 - 17:15)			
	[55] Discussion of Detector Layout (Artists: 17:15 - 18:00)			

Requirements from Physics

High resolution tracking system

- excellent primary vertex resolution
- resolution of secondary vertices down to small angles in forward direction for high x heavy flavour physics and searches
- precise pt measurement matching to calorimeter signals, calibrated and aligned to 1 mrad accuracy

The calorimeters - Energy flow

 electron energy to about 10%/ √ E calibrated using the kinematic peak and double angle method, to permille level

Tagging of γ 's and backward scattered electrons - precise measurement of luminosity and photo-production physics

- hadronic part $30\%/\sqrt{E}$ calibrated with pT_e/pT_h to 1% accuracy
 - Tagging of forward scattered proton, neutron and deuteron diffractive and deuteron physics

Muon system, very forward detectors, luminosity measurements

Physics Motivation (I)

 $\Delta \theta \sim 0.1 \text{ mrad} \Rightarrow 0.5\% @ \text{ low Q2} \qquad \Delta E_h/E_h = 1\% \Rightarrow 5\% @ x=0.8$ Two times better than H1 and full fwd/bwd coverage to $\theta = 1^\circ$

14th December 2009

Max Klein

Physics Motivation (II)

SecVtx Tag Efficiency for Top b-Jets

0.7

Try to see charm at large x

Requesting stringent Heavy Flavor tagging capabilities

Max

Klein

Beam Pipe Considerations

Pipe dimensions – very essential choice: to large extent it determines the

size of the detector. Strong implications in terms of costs and acceptance

Present design: elliptical Be beam pipe from SLHC for now: r_y=2.50 cm (radius of SLHC design) and r_x=3.07 cm (scaled from HERA experience)
 → Dedicate simulation of Interaction region needed (synchr. background)

sync rad fan bypasses active areas

- needs optimization/feedback detector WG \Leftrightarrow IR region \Leftrightarrow Accelerator Group

Detector Requirements (I)

Tracking

lowest mass tracker - essential for γ/e[±] ident (specifically bwd)

• TPC

TPC near the beam line - TPC background tolerant / BG tolerable? outer radii only? Discussion during this meeting - TPC replaced by low weight high resolution Si-Detectors ("conventional" or SiGas)

- high resolution track definition in front of forward calo
- tracking trigger in front of fwd/bwd calo
- Early π° ident vertex detector/trigger

Precision Tracking: Si-Gas Tracker – GOSSIP Gas

on Slimmed Silicon Pixels

Henry van der

Graaf

- Gas for charge creation, Si-pixel/strips/pads for signal collection
- Lightweight detector
- More than one hit per track defines track segments
- Si radiation hard standard CMOS (90 nm process)
- Trigger capable: 25ns, Gossipo 3|4 readout chip ~O(1) ns time resolution.
- Large volume detector affordable, industrial production
- Time measurement 3D tracking
- Gas choice: radiator : Transition Radiation Tracker - e/π identification
 - Diffusion and drift velocity limits position measurement currently to ~<<20µm

GridPix and

Gas On Slimmed Silicon Pixels

Gossip: replacement of Si tracker

Essential: thin gas layer (1.2 mm)

Detector Requirements (II)

Calorimeter

- Minimize longitudinal and lateral energy leakage
- Fwd/bwd Particle Flow Detector to achieve desired mass resolution ; γ/e[±]; π^o; ... This technique combines the tracking/calorimetry information in an optimal way in order to get the best possible jet-energy resolution. Or Dream (dual readout) - event to event correction
- Both electromagnetic and hadron calorimetry inside the solenoid coil; minimum material inside EmCal;
- Prototyping, test at high energy!

Magnetic Field

• 3.5 Tesla solenoidal field

Kostka, Tungs ten = compact HCAL to minimize solengid radius

PFA Performance

Empiric formula for PFA performance

- Comparing PFA and pure calorimetry:
 - PFA "wins" for E_{jet} < 400 GeV
 - There is room for improvement of the algorithm
 - Can chose reconstruction depending on event
- http://indico.cem.ch/contributionDisplay.py?contribld=268&se sionId=2&confld=30383
- http://indico.cem.ch/materialDisplav.pv?contribId=1&materialId =slides&confId=56735

Barrel Region

Mark Thomson

Christian Grefe

Default ILD: B = 3.5 T, 6 λ HCal

EJET	$\sigma_E / E = \alpha / \sqrt{E_{jj}}$ cos θ <0.7	$\sigma_{\rm E}/E_{\rm j}$
45 GeV	25.2 %	3.7 %
100 GeV	29.2 %	2.9 %
180 GeV	40.3 %	3.0 %
250 GeV	49.3 %	3.1 %
375 GeV	81.4 %	3.6 %
500 GeV	91.6 %	4.1 %

- Good option for barrel HCAL
 - need input from physics groups about mass and/or energy resolution
- PFA performance in fwd region unproven

•=> consider conventional or "DREAM" fwd calorimeter

... the detector

... an updated draft

The Detector - Low Q² Setup

(to be optimised)

- TPC replaced with Si-Gas double planes (concern about low angle tracks)

Low-x

Paul Newman

<u>Discussion Points on</u> <u>Detector Requirements</u> <u>for low x / high parton</u> <u>density physics</u>

Paul Newman (Birmingham)

with Nestor Armesto, Brian Cole, Anna Stasto and the low x working group

> LHeC @ Divonne 2/9/2009

- Generalities
- Inclusive scattering
- Vector mesons
- Inclusive diffraction
- Beam-line detection (e, p, n)
- 6) Forward jets

The High Q² Setup

(to be optimised)

L1 Low Q² SetUp \rightarrow High Q² SetUp

- Fwd/Bwd Tracking & EmC-Extensions, HaC-Insert-1 removed

- -Calo-Inserts in position
- -Strong Figures Magnet installed the December 2009

Instrumented Magnets

Tim Greenshaw

Superconducting magcal - take one

- Helium cooled SC magnet.
- Coils in He bath.

Space for calorimeter using He as active component? Could add stainless steel plates as absorber with readout pads:

Geant 4 studies Birmingham

Resolution, expect:

$$\frac{\sigma}{\mu} = \frac{\text{const.}}{\sqrt{E}}.$$

 Extract const. from slope of graph of σ/μ against 1/√E.

- Highest lumino, ity at collider requires magnets close to IP.
- These limit experimental acceptance unless they can provide (calorimetric) measurements.
- Stainless steel/LHe scintillation sandwich calorimeters look to be able to provide an energy resolution of ~ 10%/√E...
- ...but the showers in the calorimeters are broad and so they have to be reasonably large.

Solenoid

Modular structure: assembly on surface level or in the experimental area depending on time constraints and access shaft opening

Solenoid dimensions:

- 594 cm half length
- 291 cm inner radius
- B field = 3.5 T (resolution improvement)

Geometry constraints:

- Current beam pipe dimensions
- Requirement of 1° tracking coverage
- Homogeneous B field in the tracking area

Overview - Core Detector

Radius (cm)	Subdetector	Comment
2.9–4.6/3.47-6.05	2 layer ellipt. V _{pix}	δ(IP) < 10 µr
7.5–61	5 layer Si-Gas barrel	
5–61	4 cone Si-Gas barrel	
5–60	fwd/bwd × 5 × 2 planes Si-	Gas
70–110	ECAL	25-30 Xo
112-289	HCAL	6-10 λ _ι
300–330	Coil	3.5 T - tracking
340–700	Fe/muon,	

Not covered:

very forward detectors, lumi measurement, what to do w/ 2nd proton beam ... may be important for e-nucleon running: TOF system, Zero Degree Calo ... ?

Detector Simulation

Precise detector simulations are needed:

- optimize full detector designs for physics performance on mission critical processes
- optimize the designs of subsystems and subdetectors
- compare proposed detector technologies with each other (in concert with test beam)
- The hardware selection aspect makes use of world wide efforts for the preparation of ILC and SLHC experiments

Simulation of Detector in Geant4

Adnan Kilic

A. Kilic, F. Kocak and I. Tapan Uludag University, Turkey

Simulation

First promising steps towards GEANT4 detector simulation for physics

kaon- blue, kaon+ red, kaon0 black, kaon0S black, kaon0L black, kaon0 green, e- blue,e+ red, pi+ red, pi- blue, mu+ red, mu- blue, nu_mu black, gamma green,neutron yelle

Simulation Framework

- Several tools on the market
 Use a homogeneous, powerful and widespread
- Frameworks which have come to our attention:
 - 4th concept IICRoot ILC evolved from: AliRoot Alice
 LHC
 - Based on CERN software root with so-called Virtual Monte Carlo
 - 4 experiments using AliRoot based framework: Ali - Ilc - Fair - MPD -Root
 - Import of our contained model-detector geometry in the environments
 - Good contact to developers
- Dedicated manpower for software implementation needed

ep Higgs event in 4th detector

Summary

- Need to define beam pipe radii feedback w/ accelerator and physics working groups (HF tagging needs)
- Need to agree benchmark physics analyses negotiate different requirements on the detector
 - mass resolution needed
 - heavy flavor tagging needs
- Benchmark analyses need to be set up in simulation environment need simulation experts
- We are trying to give our best estimation for first detector iteration nothing is final yet, but should provide a reasonable start
- CDR detector design philosophy 'conventional' technology + new options

Backup slides

Infrastructure

ALICE

- Round access shaft of 23m diameter, cavern about 50m along the beamline
 LHCb
- Shaft: 100m depth, 10.10m diameter, very slightly non vertical; experiment: length 19.90m from IP, max width at the muon station 12m; cavern: 50m x 20m

Point 2 (Alice)

Point 8 (LHCb)

Simulation Environment (I)

P-p Alice

