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Disclaimer : 
What this lecture is not going to be about…

- Bayesian confidence intervals

- Goodness of fit theory

- It will not be a lecture on the fundamental theory of statistics 

- Multivariate techniques

- In depth discussion of systematics and their treatment

- Bayesian vs. Frequentist diatribe



Goal(s) of the Lecture

- Review the basic knowledge in statistics as needed in HEP

- Give concrete Root-based macro examples for hands-on 

experience 

All you need to know are the basic four operations

Just starting from a simple uniform random number generator 

- Finally apply these fundamentals to a concrete hot topic in 

today’s experimental physics… 

The search for the Higgs boson



Why are Statistics so Important in Particle Physics ?

Because we need to give quantitative statements about processes that 

have some inherent randomness…

“La theorie des probabilités n’est, au fond, 

que le bon sens reduit en calcul”

P. S. Laplace (1749-1824)

Liber de ludo aleae

… May this randomness be of measurement nature or quantum …

How did it all start ?

G. Cardano (1501-1576)

To study games of chance !

And many others to follow (Pascal, Fermat, etc.. )

QuickTime™ et un
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sont requis pour visionner cette image.



What is a Statistical Error ?
Imagine I have a billion white     and blue     golf balls  

I decide to through one million of them into a well and decide an admixture of  15 

out of one hundred blue ones…

p 15%

I then know PRECISELY the 

probability that if you pick one at 

RANDOM, it will be blue…

You of course don’t know this number 

and you want to measure it… 

QuickTime™ et un
décompresseur 

sont requis pour visionner cette image.

All you have is a bucket…

Which contains exactly 300 balls



n 300

k 36

This is approximately how the well looks like inside…

You throw the bucket and pull out the following outcome

Aha! You have a measurement!

P 12%

The probability is…

… But how precise is it ?

Remember you are not supposed to know the true value!



Of course had you thrown your bucket on a different spot, you would have probably 

had a different measurement and the statistical error would be different…

The difference between a measurement and the true value is the Statistical Error

In this case it would be 3% absolute (20% relative), but since you don’t know the true 

value you don’t know at all what your statistical error really is !

Precise definition of statistical error

This can be done provided that you know the law of probability governing the possible 

outcomes of your experiment …

What you want to know is your measurement error, or what  the average statistical 

variation of your  measurement is… 

(and the true value of p, but assume that 12% is a close enough)

You want to know what the probability for an outcome of k golf balls to be blue is.

For one specific outcome the probability is:

P p
k

(1 p)
n k

What are all possible combination of outcomes of k blue balls out of n?



What are all possible combination of outcomes of k blue balls out of n?

For the first blue ball there are n choices, once this choice is made the second ball 

has n-1 choices,… the kth ball has (n-k) choices.

In a simple case…  n=10 and k=3 this can be seen as: 

The first blue ball has n choicesThe second has n-1 choicesThe third has n-1 choices

n   (n 1)   (n 2)So the number of combinations is :

In the general case : n (n 1) (n 2) (n 3)... (n k 1)
n!

(n k)!

Because we do not care about the order in which we have picked the balls

… avoid the double counting!

1    2                3

1    3                2

2    1                3

3    1                2

2    3                1

3    2                1

Each configuration is counted 6 times



This number corresponds in fact to the number of combinations of k blue balls out of k 

balls and therefore :

k (k 1) (k 2) (k 3)... 1 k!

In order to account for each combination only once you just need to divide by the 

number of re-arrangements of the k blue balls. 

Aka the number of re-arrangements of the k blue balls. 

So the number of combinations of k elements among n is given by :

P Cn
k
p
k

(1 p)
n k

Cn
k n!

k!(n k)!

The probability to pick k blue balls among n, given a probability P that the a ball is 

blue is thus :

This is an absolutely fundamental formula in probability and statistics! 

It is the so called Binomial Probability!



The Binomial Probability

Binomial coefficients were known since more than a thousand years…

… they were also the foundation of modern probability theory! 

The Pascal Triangle (~1000 AD)B. Pascal (1623-1662)



So what is the precision of your measurement ?

A good measure of the precision (not the accuracy) is the Root Mean Square Deviation

(square root of the variance) of possible outcomes of the measurement.

You will compute it yourself. To do so you need two steps… 

(see next slide for the full derivation)

So now you know the variance of your distribution for a given probability P…

In your case : P 12%

RMSD nP(1 P) 5.6

Assuming P is close enough to the true value, the precision is :

Step 1 : Compute the mean value of the binomial probability

Step 2 : Compute the variance of the binomial probability

nP

Variance nP(1 P)

The relative precision ~15% is rather poor and the accuracy questionable! (Remember, your 

statistical error is 45 - 36 = 9, although you are not  supposed to know it !)



Step 1 : Compute mean value Step 2 : Compute variance



But wait…

You have noticed that the average binomial probability is the expected value!   

Your initial measurement (36) !

The average number of blue 

balls in 50,000 throws :

NumberBlue 44.98

P 14.99%

Now you decide that your measurement is the average, what is its precision ?

Nthrows = 1Nthrows = 2Nthrows = 6Nthrows = 11Nthrows = 100Nthrows = 1000Nthrows = 10000Nthrows = 50000

You will do it 50,000 times and meticulously plot the number of counts. This is what you get :

Intuitively you will therefore try to repeat and average your measurements…

See Binomial.C

Now you are curious to see what happens if you repeat your measurement!



What is the variance of the average ?

Var aiX i
i 0

n

ai
2
Var(X i) aia jCov (X i,X j )

0 i j ni 0

n

Cov (X,Y ) (X X )(Y Y )

Let’s start from one straightforward property of the Variance for two random variables X and Y : 

Var aX bY (aX bY aX bY )
2

a(X X ) b(Y Y )
2

a
2
Var(X ) b

2
Var(Y ) 2abCov (X,Y )

Where the covariance is :

This formula generalizes to…

Therefore assuming that each of the bucket throws measurement           is independent from 

the previous one, the mean value being a simple sum of the measurements divided by the 

number of throws :

NumberBlue NBlue
k

k 1

NThrows

NBlue
k

The variance then is :

Variance
nP(1 P)

NThrows



Number of throws averaged (x10)

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 

B
lu

e
 B

a
lls

The precision being given by the Root Mean Square Deviation :

RMSD
nP(1 P)

NThrows

RMSDIndividual

NThrows
0.01%

Very interesting behavior : Although you do not know the true value p, you see that the 

average is converging towards it with increasing precision!

This is an illustration of the LAW of LARGE NUMBERS ! Extremely important, intuitive but 

not trivial to demonstrate…

See Binomial.C

The line here is the true value !

Your initial measurement



What is the meaning of our first measurement Nblue = 36 ?

Now that we know (after 50,000 throws) to a high precision that the probability of a 

blue ball is very close to 15%.

The frequency of an outcome as low as 12% is ~10% (not so unlikely!)

What difference would it make if you had known true value ?

Frequency at which the true value is within the precision as estimated from the 

measurement :

Frequency at which the measurement is within the precision as estimated from the 

truth : 

Pmeas p nPMeas(1 PMeas)

Pmeas p np(1 p)

67% (of the cases the true value is 

within the measured error) 

70% (of the cases the measurement is 

within the true statistical RMSD) 

The true value coverage is similar in the two cases, keep these values in mind…

Here all results are derived from a simulation in terms of frequencies…

Computing Binomial probabilities with large numbers of N can be quite difficult !

See Coverage.C



The Gaussian or Normal Probability

Is there a way to simplify the computation ? Not so trivial to compute 300! directly…

A very nice approximation of the Binomial Probability can be achieved using 

Stirling’s Formula !

n! 2 n
n

e

n

(See derivation in the next slide)

Cn
k
p
k
(1 p)

n k 1

2
2
e

(k k )2

2 2

np(1 p)

Formula is valid for large values of n…



Binomial convergence towards Normal 



Validity of the Normal Convergence (Approximation)

Does the approximation apply to our bucket experiment (n=300 and p=15%) ?

Not bad (although not perfect) !

In practice you can use the normal law when approximately n>30 and np>5

C. F. Gauss (1777-1855)

See NormalConvergence.C



What is so “Normal” About the Gaussian?

The Central Limit Theorem… … at Work !

When averaging various independent random variables (and identically 

distributed) the distribution of the average converges towards a Gaussian 

distribution

See CLT.C

RMS = 
[0,1]

12

1

2

1

3

1

10

At N=10 an excellent agreement with a 

gaussian distribution is observed

N = 1N = 2N = 3N = 10

The CLT is one of the main reasons for the great success of the Gaussian law…

On the one hand the CLT is very powerful to describe all those phenomena that result from the 

superposition of various other phenomena… but on the other hand it is just a limit… 



The Notion of Standard Error

GPDF (x, , )
1

2
2
e

(x )
2

2
2Starting from the gaussian PDF :

Let’s give a first definition of a central confidence interval as the deviation from the 

central value…

P(a )
1

2
2
e

(x )2

2
2

a

a

dx

Then for : - a = 1 : P(a ) = 68.3% 

- a = 2 : P(a ) = 95.4%

- a = 3 : P(a ) = 99.7 %

See NormalCoverage.C

If you knew the true value of the “error” ( ) then you could say that the in the gaussian limit 

that the true value has 68.3% probability to be within the 1s, but in many practical examples 

(such as the well) the true value of the error is not known…



How does the Bucket Experiment Relate to Particle Physics?

This is precisely what we call in particle physics cross sections…

The bucket experiment is the measurement of an abundance (blue balls)…

… except that the bucket contains all collisions collected in an experiment so…

- We try to fill it as much as possible (N is very large and not constant!)

- The processes we are looking for are very rare (p is very small) 

The very large N makes it difficult to compute the binomial probability…



The Poisson Probability

Cn
k
p
k
(1 p)

n k (np)
k

k!
e

(np )
k

k!
e

In the large n and small p limit and assuming that np = is finite you can show 

(see next slide) that …��

Much simpler formulation! In practice you can use the normal law when approximately n>30 and np<5

See PoissonConvergence.C

N=100 and p=25%N=100 and p=15%N=100 and p=10%N=100 and p=2%N=100 and p=5%



S. D. Poisson (1781-1840)

Interesting to note that Poisson 

developed his theory  trying not to solve a 

game of chance problem but a question 

of Social Science !



Poisson Intervals (or Errors)

Now how will you define a central confidence interval in a non symmetric case ?

The integration needs to start from the most probable value downwards…

Here is our first encounter with the necessity of an ordering !

Equiprobable boundaries 

68%



What have we learned ? 

3.- We came across a very important formula in the previous slides 

Var aiX i
i 0

n

ai
2
Var(X i) aia jCov (X i,X j )

0 i j ni 0

n

That generalizes (with a simple Taylor expansion) to…

var( f (x1,...,xn )) (
f

x i
)

2
var( x i)

f

x i

f

x j
cov(x i,x j )

0 i j ni 0

n

…and a few by-products…

1.- Repeating measurements allows to converge towards the true value of an 

observable more and more precisely …   

But never reach it with infinite precision !!!

Even more so accounting for systematics… 

(what if the balls do not have an homogeneous distribution ?)

2.- Binomial variance is also useful to compute the so-called binomial error, mostly 

used for efficiencies : 

N

(1 )

N

np

For an efficiency you must consider n fixed !



Unfortunately in High Energy physics experiments, events (balls) don’t come in 

single colors (white or blue) … Their properties are not as distinct !

QuickTime™ et un
décompresseur 

sont requis pour visionner cette image.Background ?
Let alone that they can be 

indistinguishable (quantum 

interference)

For instance take this simple event :

Likelihood

QuickTime™ et un
décompresseur 

sont requis pour visionner cette image.Higgs ?

Could be many things …



How can we distinguish between the two ?

Very vast question, let’s first start with how to measure their properties

(Which is also a very vast question!)

QuickTime™ et un
décompresseur 

sont requis pour visionner cette image.

One clear distinctive feature is that the signal is a narrow mass resonance, while 

the background is a continuum !

To measure properties in 

general (a.k.a. parameter 

estimation) among the most 

commonly used tools is the 

maximum likelihood fit…  



What is a Likelihood ?

A simple way of defining a Likelihood is a Probability Density Function (PDF) which 

depends on a certain number of parameters…

Simplistic definition is a function with integral equal to 1…

Here is your first measurement (36) !

Here is its probability !

Under certain hypothesis :

- Gaussian centered at 45 (p=15%)

- Width equal to error for 1 bucket 

(~6.2 blue balls)

or Likelihood

Let’s return to the well experiment but under a different angle this time…

Not so likely !

(but this applies to any parameter estimate)



What happens when we throw more buckets ?

This probability will soon be very very small (O(0.1))100... It is easier to handle its log :

ln(L( )) ln( f (ni))
i 1

n

Then the probability of each bucket can be multiplied!

L( ) f (n i)
i 1

N

Then tp estimate a parameter one just has to maximize this function of the parameter 

(or minimize -2lnL you will see why in a slide)…

See how the accuracy translates in the sharpness of the minimum!

See Fit.C

N=100N=1000N=10000



2ln(L( )) 2 ln( f (ni))
i 1

n

In our simple (but not unusual) case we can see that : 

2 ln(
1

2
e

(n i )
2

2
2

)
i 1

n
(ni )

2

2

i 1

n

cste

This is also called       
2

There is an exact equivalence between maximizing the Likelihood or minimizing 

the 2 (Least Squares Method) in the case of a gaussian PDF

You can also see that the error on 

the measured value will be given by 

a variation of -2 ln L of one unit :

( 2ln(L( ))) 1

44.95 0.06

n
Which is precisely

See Fit.C



How to perform an unbinned likelihood fit :

What have we learned?

For n=1000 the fit yields

44.91 0.19

Using a simple binned fit (as shown here 

with 100 bins) in the same data yields :

44.81 0.20

LSM between the PDF and the bin value 

This can of course be applied to any parameter estimation, as for 

instance the di-photon reconstructed mass !

See Fit.C



Hypothesis Testing

How to set limits or claim discovery ?

Hypothesis Testing in HEP Boils Down to One Question : 

Is there a Signal ?



Exclusion, Observation or Discovery ?
The goal here is to assess quantitatively the compatibility of our observation with two 

hypotheses :

The first obvious way of ordering possible outcomes of experiments is the number 

of observed events…

First we need to be able to have estimate whether an experiment is more Signal-like 

or Background-Like. In other words we need to have an ordering of our experiments. 

Neyman construction (1933) 

Imagine a simple experiment which is almost background free. 

evtsnELet’s define the following estimator : 

If you observe 0 events… then your experiment will be background like!

What if you observe one event or more ?

What would the exclusion limit on a signal be ?

No-Signal (H0) and presence of Signal (H1)…



What does setting an exclusion limit really means ?

When an experiment is made, excluding a given signal means that the probability 

for the hypothetical signal process to yield the outcome is small. 

Typically exclusions are made when a signal will not yield an outcome more 

background like than the one observed  more than ~5% of the times.

CLs e
s s

i

i!
i 0

nobs

In our simple “Event Counting” experiment, using the Poisson probability, the 

probability that a signal experiment yields an outcome more background like 

than observed is given by : 

30 95Nnobs

23.41 95Nnobs

nobs 2 N 95 6.30

)05.0(
s

e

)05.0)1(( se
s

)05.0)
2

1((
2

s
se

s

In such case the limit on the signal yield will be given by the simple equations :



Neyman Construction

Another way of looking at this is the Neyman construction…

nobs

s

For a given signal hypothesis 

what is the range of 

observations that contains 

95% of the outcomes when 

accounted for in decreasing 

order (E)

The contour yields the limit for a given observation 

See Neyman.C



Another example in the presence of background (b=3)

95% Confidence area (E = n) 
E P(n | s) e

(s b ) (s b)
n

n!

nobs

s

nobs

s
Example of construction of the central 

confidence interval (as for the Poisson error)

Problem 1 : 0 signal is excluded (non sense) !

Problem 2 : When/how to switch to a central 

confidence interval ?

Flip-Flopping

See Neyman.C



P(n | s)
P(n | s b)

P(n | max( 0,n b))

Both problems are solved by the G. J. Feldman and R. D. Cousins ordering 

parameter :

See Neyman.C

nobs

s

Note the small exclusion (it is 

in good agreement with the 

background fluctuation)

Best signal estimate in the 

data (maximizes P)

This method is related to a general Lemma (see next slide) and has inspired more 

advanced techniques in hypotheses testing…



The Neyman-Pearson Lemma

The underlying concept in ordering experiments is really to quantify the compatibility 

of the observation with the signal hypothesis (H1) …

The problem of testing Hypotheses was studied in the 30’s by Jerzy Neyman and 

Egon Pearson…

They have shown that the ratio of likelihoods of an observation under the two 

hypotheses is the most powerful tool (or test-statistic or order parameter) to 

E
P(H1 | x)

P(H0 | x)



The Profile Likelihood

A very useful tool to compute limits, observation or discovery sensitivties and treat 

systematics is the Profile Likelihood…

QuickTime™ et un
décompresseur 

sont requis pour visionner cette image.

Let’s again take the example of the H gg analysis at LHC (in ATLAS)

We have a simple model for the 

background : 

b(m, ) 1e
2m

Relies only on two parameters

Assume a very simple model for 

the signal :

s(m, ) s Gauss(m)

The Gaussian is centered at 120 GeV/c2 

and a width of 1.4 GeV/c2



The Profile Likelihood

L( , | data) (s(mi, ) b(mi,
i data

))

The overall fit model is very simple :

This model relies essentially only on two types of parameters : 

- The signal strength parameter ( )

- The nuisance parameters ( )

It is essentially the signal normalization

Background description in the “side bands”

( )
L( , ( ) | data)

L( , | data)

Test of a given signal hypothesis 

Best fit of the data

Prescription similar to the Feldman Cousins

q 2ln( ( ))Usually work with the estimator : Because …



Wilks’ Theorem

QuickTime™ et un
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Under the H Signal hypothesis the PL is distributed as  a 2 with 1 d.o.f. !
(v.i.z a well know analytical function)

Signal-plus-background 

Toy experiments

Background only

Toy experiments ( ’=0)

Background-likeliness

To estimate the overall statistical behavior, toy MC full experiments are simulated and fitted !



95% CL Limits

The observed 95% CL upper limit on is obtained by varying until the p value : 

1 CLs b p f (q
qobs

| )dq 5%

The 95% CL exclusion sensitivity is obtained by varying until the p value : 

p f (q
med(q |0)

| )dq 5%

Background only experiments

This means in other words that if there 

is a signal with strength , the false 

exclusion probability is 5%.

Analytically simple
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Exclusion Results
Performing this analysis for several mass hypotheses and using CLs+b the exclusion 

has the same problem as the simple Poisson exclusion with background…

i.e. a signal of 0 can be excluded with a fluctuation of the background

We thus apply the (conservative) “modified frequentist” approach that requires : 

CLb f (q
qobs

| 0)dqCLs CLs b /CLb 5% where

No-Signal (H0) and presence of Signal (H1)…



Observation and Discovery

The method is essentially the same, only the estimator changes…we now use q0

In this case the f(q0|0) will be distributed as a 2 with 1 d.o.f. (Wilks’ theorem)

p f (q0

qobs

| 0)dq0

- To claim an observation (3 ) : the conventional p-value required is 1.35 10-3

- To claim an observation (5 ) : the conventional p-value required is  2.87 10-7

Corresponds to the “one sided” convention

This means in other words that in 

absence of signal, the false discovery  

probability is p.

« a probability of 1 in 10 000 000 is almost

impossible to estimate »

R. P. Feynman

(What do you care what other people think?)



Conclusion
We went through an overview of the fundamental concepts of statistics for HEP  

If possible take some time to play with the Root-Macros for hands-on experience

You should now be able to understand the following plot !

QuickTime™ et un
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There is a lot more for you/us to learn about statistical techniques

In particular concerning the treatment of systematics

So be patient and take some time to understand the techniques step by step…

… and follow Laplace’s advice about statistics !


