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Special Relativity

Reference material: Available from the AIMS Library.

1. Wolfgang Rindler, Essential Relativity, Special, General, and Cosmological
(Springer-Verlag, Berlin, 1977, Revised Second Edition):
Chapters 1 to 6.

2. Ray D’Inverno, Introducing Einstein’s Relativity (Clarendon Press, Oxford, 1992):
Chapters 1 to 4.
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Elements of Relativistic Quantum Field Theory

Excerpts from

J. Govaerts, The Quantum Geometer’s Universe: Particles, Interactions and Topology,
Proceedings of the Second International Workshop on Contemporary Problems in Mathematical
Physics (Cotonou, Benin, October 28th - November 2nd, 2001), eds. J. Govaerts, M. N. Hounkonnou
and A. Z. Msezane (World Scientific, Singapore, 2002), pp. 79–212 [e-print arXiv:hep-th/0207276].

Available from the AIMS Library.

For the references, see the original text.
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The Quantum Geometer’s Universe:
Particles, Interactions and Topology

With the two most profound conceptual revolutions of XXth century physics, quantum
mechanics and relativity, which have culminated into relativistic spacetime geometry and
quantum gauge field theory as the principles for gravity and the three other known fun-
damental interactions, the physicist of the XXIst century has inherited an unfinished sym-
phony: the unification of the quantum and the continuum. As an invitation to tomorrow’s
quantum geometers who must design the new rulers by which to size up the Universe at
those scales where the smallest meets the largest, these lectures review the basic principles
of today’s conceptual framework, and highlight by way of simple examples the interplay
that presently exists between the quantum world of particle interactions and the classical
world of geometry and topology.

1 Introduction

It is often said that the profound conceptual revolutions of XXth century physics may be ascribed to
three fundamental physical constants, namely Newton’s constant GN characteristic of the gravitational
interaction, light’s velocity in vacuum c displaying the relativistic character of physical reality, and
Planck’s constant ~ = h/2π as the hallmark for the quantum character of the physical universe. All
of these constants have incessantly been used much like light beacons with which to probe the as yet
unexplored territories beyond the known physical laws of our material world, grasping for this ever
unfulfilled dream of the ultimate unification of all of matter, radiation and their interactions.

Each of these three constants on its own has led to its separate conceptual revolution, even
beyond the confines of the scientific methods of physics, in ways that shall not be recalled here.
However, when considered in combination, these constants imply still further profound conceptual
revisions in our understanding of the physical world, which themselves stand out as the genuine
unfinished revolutions of XXth century physics. Indeed, even though the combinations of GN with c
on the one hand, and of c and ~ on the other hand, have each led to a profound new vision onto the
material universe through the physicist’s eye, the formulation of a conceptual framework in which all
three constants play an equally important role is the wide open problem that confronts physics in this
XXIst century.

As is well known, the marriage of GN and c leads to a curved spacetime whose geometry is
dynamical and is governed by the energy-matter distribution within it, a framework within which the
gravitational interaction is the physical manifestation of any curvature in space and in spacetime. The
most fascinating offsprings of this union are undoubtedly, on the one hand, the cosmological theory
of the history of our universe from its birth to its ultimate demise if ever, and on the other hand, the
prediction for regions of spacetime to be so much curled up by their energy-matter content that even
light can no longer escape from such black holes. For instance, the value

r0 = 2
GNM

c2
(2)

for the horizon of a neutral nonrotating black hole of mass M displays the combined contribution of
gravity and relativity. These examples are but two specific outcomes of classical general relativity,
a relativistic invariant theory of gravity whose construction is based on a simple geometrical thus
physical principle: the description of physical processes should be independent of the local spacetime
observer, namely, it should be independent of the choice of local spacetime coordinate parametrisation.
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The theory should be invariant under arbitrary local coordinate transformations in spacetime1. In
other words, a gauge invariance principle is at work, leading to a description of the gravitational
interaction based on a simple but powerful symmetry and thus geometry principle.

On the other hand, the marriage of c and ~ leads naturally to the quantum field theory descrip-
tion of the elementary particles and their interactions, at the most intimate presently accessible scales
of space and energy, a fact made manifest by the value for their product,

~ c ≃ 197 MeV · fm. (3)

In fact, one offspring of this second union is the unification of matter and radiation, namely of particles
with their corpuscular propagating properties and fields with their wavelike propagating properties.
Particles, characterised through their energy, momentum and spin values in correspondence with the
Poincaré symmetries of Minkowski spacetime in the absence of gravity, are nothing but the relativistic
energy-momentum quanta of a field, thereby implying a tremendous economy in the description of
the physical universe, accounting for instance at once in terms of a single field filling all of space-
time for the indistinguishability of identical particles and their statistics. Furthermore, quantum
relativistic interactions are then understood simply as couplings between the various quantum fields
locally in spacetime, which translate in terms of particles as diverse exchanges of the associated
quanta. Such a picture lends itself most ideally to a pertubative understanding of the fundamen-
tal interactions, which has proved to be so powerful beginning with quantum electrodynamics, up
to the modern SU(3)C×SU(2)L×U(1)Y Standard Model of the strong and electroweak interactions.
Such a perturbative representation of processes requires a renormalisation procedure of the basic field
parameters—their normalisations, masses and couplings—, and one has had to learn how to identify
theories for which this renormalisation programme is feasable. In the course of time, a general class of
renormalisable field theories has been identified, all falling again under the general spell of the gauge
symmetry principle as did the gravitational interaction!

Even though the physical meaning ascribed to the renormalisability criterion has evolved in
such a manner that these theories are nowadays viewed rather as effective theories for some as yet
unknown more fundamental description becoming manifest and relevant at still higher energies, the
fact remains that the gauge symmetry principle is again at work at the most intimate level of the
unification of the relativistic quantum. But this time, this invariance under local transformations in
spacetime applies to some “internal” space of degrees of freedom, that fields and their quanta carry
along and which are made physically manifest through the different charges and quantum numbers
that particles possess. Hence, through countless experiments performed at ever increasing energies
and with ever increased technical sophistication, three generations of quarks and leptons, the basic
building blocks of matter, each such generation being comprised of two quarks, one charged lepton
and its associated neutrino, have been identified, and their reality inscribed into the construction of
the Standard Model. All interactions among these six quarks and six leptons are governed by the
gauge symmetry principle, with SU(3)C×SU(2)L×U(1)Y symmetries acting within internal space and
independently, though in a continuous fashion, at each point of spacetime. This local realisation of
the symmetry requires the existence of gauge bosons, as the carriers of the symmetry and thus of
the interactions from one spacetime point to the next. There are thus eight gluons for the strong
interaction, the charged and neutral massive electroweak gauge bosons W± and Z0 for the charged
and neutral current weak interactions, and finally the photon for the electromagnetic interaction.
Only one member of the Standard Model family has yet to be discovered experimentally, namely the
so-called higgs particle which should be responsible for a mechanism at the origin of the masses for
all quarks, leptons and massive gauge bosons. The higgs hunt is on at the most powerful particle
accelerators in the world, the last missing offspring of the union of c and ~.

Given the fundamental role played by symmetries, hence also geometry, in the unifications of
fundamental physics concepts achieved throughout the last century, it is fair to characterise XXth

1Einstein’s theory of general relativity has furthermore inscribed into it the equivalence principle between inertial and

gravitational mass.
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century physics as the reign supreme of the symmetry principle, this principle being pushed into its
most extreme realisations possible through the gauge symmetry principle. This includes the possibility
of supersymmetry, a symmetry that relates bosonic and fermionic particles which, when rendered local
in spacetime, leads to theories of supergravity that must necessarily include a quantum gravitational
sector. But it also appears that this symmetry principle has finally unveiled all its hidden physical
secrets in the embodiement it has acquired within a field theory description of the universe, of its
matter content and of its fundamental interactions. Even though the symmetry principle seems to
have yielded all its potential, it proves not to be potent enough to bring order to a ménage à trois in
which all three fundamental constants GN , c and ~ would be living peacefully and happily together
on equal terms, to bear many news fruits of their ultimate union. As is well known, there does not
yet exist a commonly accepted theoretical formulation for a quantum theory of relativistic gravity
which would also include the other fundamental interactions and their matter fields, all consistently
expressed within a quantum framework.

Looking back at the brief and superficial highlights recalled above, one realises that the non-
quantum relativistic description available for the gravitational interaction is in fact the ideal realm
of the “relativistic continuum” reigning supreme, the utmost physical application as of today of the
notion of differentiable structures in geometry. Likewise, the other component of the same story,
namely the relativistic quantum field theory description of the elementary particles and their other
fundamental interactions, is in fact the ideal realm of the “relativistic quantum” reigning supreme, the
utmost physical outcome of the ideas of quantisation and its associated abstract algebraic structures.
The fundamental problem that XXIst century physics is to confront is that of the final marriage of
the “continuum” and the “quantum”, namely of identifying a mathematical formulation of what is
referred to as “quantum geometry”, the new conceptualisation of what the geometry of spacetime
ought to be when explored at the most extreme and smallest scales.

In terms of the three fundamental constants GN , c and ~, it is well known how the quantum
regime for relativistic gravity is characterised by Planck’s mass, length and time scales,

MPl =

√

~c

GN
≃ 1019 GeV/c2, LPl =

~c

MPlc2
≃ 2 × 10−35 m,

τPl =
LPl

c
≃ 6 × 10−44 s. (4)

Even though these values lie way beyond the reach of present day accelerators, as well as of present day
theories, processes at such scales must have taken place in the early universe, while from the conceptual
point of view, the fundamental conflit between the classical relativistic realm of the “continuum” for
gravity with the quantum relativistic realm of the “quantum” for particles and their other interactions,
cries out to the XXIst physicist for a new conceptual revolution that ought to resolve this basic mutual
inconsistency of present day physics principles. From that point of view, XXIst century physics will
be the search for the Quantum Geometry Principle, the inherited unfinished physics symphony of the
XXth century composed so far according to the rules of the Symmetry Principle.

With the advent of M-theory, the nonperturbative embodiement of superstring theories, and
possibly also with the loop gravity programme, we are most probably already getting the first glimpses
of this quantum geometry waiting to be discovered by tomorrow’s bright young minds. Such a pursuit
in search of the possible ultimate unification, all at the same time, of matter and its interactions,
and of geometry and the quantum, belongs to the best of scientific traditions finding its roots back in
the earliest days of the human intellectual adventure. It should only be just that within all peoples
of the world, as much from developing as from developed countries, those whose calling lies towards
such an avenue should find an environment within which to contribute on equal terms to this ultimate
understanding of our physical universe and its history. A workshop of this type is an opportunity to
highlight some of the issues surrounding this unfulfilled quest, and hopefully entice bright new minds
to dedicate themselves to this adventure at the frontiers of physical concepts. The education to critical
and scientific thinking that such a research activity requires can only benefit any society within which
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it is pursued, both in its human and intellectual aspirations as well as in its educational, technological
and economic development, bringing man always a little closer to the stars, the eternal yearning of his
soul. Countless examples over human history bear witness to this fact, and many of us today benefit
in so many ways from the fruits of this unswaying quest at the most abstract level as it has been
pursued over centuries past.

These lecture notes do not, of course, have any pretence to outline what quantum geometry
ought to be, which, after all, is the XXIst century quantum geometer’s task! Rather, these lectures
wish to present sort of a guided tour of the general principles of symmetry and quantum physics
that have led to the relativistic quantum field theory description of the elementary particles and their
fundamental interactions, aiming at the end towards illustrations of the fact that beyond the gauge
symmetry principle which seems to govern all interactions, when it comes to geometry—namely the
“continuum” and gravity—and the “quantum”, topology is also called to play a vital role. In fact, one
is very much led to suggest that the problem of quantum gravity should find a resolution only when
considered together with all the other quantum matter and interacting fields, while pure quantum
gravity is oblivious actually to any geometry, and would be governed only by the rules of quantum
topology. Indeed, this is the programme that was launched with the discovery of topological quantum
field theories. Finally, these notes concentrate on the quantum field theory side of the above story,
assuming that the reader is most familiar already with the views of classical continuum geometry as
applied within the physical context of the gravitational interaction and general relativity. This is thus
the spirit with which these notes are offered to the aspiring quantum geometers of the XXIst century
who are attending this Workshop.

Contents are organised as follows. Section 2 discusses the general rules of abstract canonical
quantisation, based on the Hamiltonian formulation of a given dynamical system. These rules are
then applied to relativistic field theories in Section 3, to establish that such quantised theories provide
a natural description of quantum relativistic particles in Minkowski spacetime. Section 4 introduces
then to interacting quantum field theories and, as a general class of renormalisable theories in four
dimensions, to general Yang-Mills theories, possibly subjected to the Higgs mechanism of spontaneous
symmetry breaking. This discussion thus also serves as a motivation for Section 5 which addresses the
general problem of the quantisation of systems subjected to constraints in phase space, which include
any gauge invariant system, following Dirac’s general analysis of this issue. Rather than introducing
then the general methods of BRST quantisation, the recent and most efficient approach towards the
quantisation of constrained systems based on the physical projector is also discussed. As an example
of its possible use, the quantisation of 2+1-dimensional Chern-Simons theory is briefly described in
Section 6, which in fact is one of the simplest examples of a topological quantum field theory. Finally,
Sections 7 and 8 introduce to bosonic string theory and its toroidal compactification. These last
three sections serve as first witnesses to the necessity to develop a new mathematical framework for
quantum theories of gravity, whether they include matter degrees of freedom or not, that should
define the sought-for “quantum geometry” of the fundamental unification. Finally, further comments
are presented in the Conclusions.

Our conventions will be stated where appropriate. Notice also that all the discussion will be
confined to bosonic degrees of freedom only, but that similar developments exist of course for systems
combining both bosonic and fermionic degrees of freedom. Suggestions for some exercises are also
provided, some of which could in fact become PhD research topics on their own. Finally, no attempt
has been made at providing an exhaustive bibliography, for which we apologise to anyone who might
feel her/his work is being overlooked. Rather, we hope that references given would suffice to quickly
identify further relevant sources to any particular topic of interest.
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2 Abstract Canonical Quantisation

2.1 Dynamics

2.2 Hamiltonian formulation

2.3 Representations of the Heisenberg algebra

The configuration space representation

The momentum space representation

The Fock space representation

The coherent state representation

3 Relativistic Quantum Particles and Field Theories

Starting with this section, we shall explicitly work in four-dimensional Minkowski spacetime with
coordinates xµ (µ = 0, 1, 2, 3) and a metric ηµν of signature (+ − −−). Furthermore as is customary
in quantum field theory, units such that ~ = 1 = c are also being used throughout, so that mass and
energy on the one hand, as well as time and space on the other, are each measured in the same units,
while energy and time, for instance, are of inverse dimensions. Hence, any mechanical quantity may
always be expressed in units of mass to some power.

3.1 Motivation

It is an experimental fact that there exist particles in nature, which behave both with relativistic and
quantum properties, have definite energy, momentum and thus invariant mass values, and may be
created or annihilated through different physical processes. Which type of mathematical framework
would be able to account for all these physical properties all at once?

As we have recalled above, the quantisation of the harmonic oscillator leads to such a framework.
Indeed, the operators a and a†, which obey the Fock algebra [a, a†] = I, provide for the annihilation
and creation of energy quanta, each carrying an identical amount ~ω of energy. Furthermore, we also
know that associated to these operators, there exists some configuration space operator q̂ which in the
Heisenberg picture has a time dependence defined by (from now on, the choice of reference time will
be t0 = 0)

q̂(t) =

√

~

2mω

[

a e−iωt + a† eiωt
]

, (5)

which, in the classical limit, thus defines the entire real line as the space of classical configurations of
the system. Hence, the configuration space quantum operator q̂(t) in the Heisenberg picture obeys
the following equation

[

d2

dt2
+ ω2

]

q̂(t) = 0, (6)

which also coincides with the classical equation of motion for the system, which derives from the
Lagrangian action

S[q] = m

∫

dt

[

1

2

(

dq

dt

)2

− 1

2
ω2q2

]

. (7)
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Let us now try to extend this mathematical framework to spinless relativistic quantum particles
of definite energy-momentum kµ = (k0, ~k) and mass m such that k0 = (~k 2+m2)1/2 = ω(~k ), and which
may be created or annihilated in specific physical processes. Thus, for each of the possible momentum
values ~k, one should introduce a pair of creation and annihilation operators a†(~k ) and a(~k ) obeying
the Fock space algebra

[

a(~k ), a†(~k′)
]

= (2π)3 2ω(~k ) δ3(~k − ~k′), (8)

where, compared to the Fock algebra for the harmonic oscillator, the normalisation of the operators
has been modified for a reason to be specified presently. Thus in particular, 1-particle quantum states
are obtained from the normalised Fock vacuum |0〉 as

|~k〉 = a†(~k ) |0〉, 〈0|0〉 = 1. (9)

Proceeding by analogy with the harmonic oscillator case, in order to identify the configuration space
for such a quantum system, let us also consider superpositions of these operators such as in (5).
However, since we wish to develop a formalism which is manifestly spacetime covariant under Lorentz
transformations, the product ωt appearing in the imaginary exponentials that multiply the operators
and which thus corresponds to the product of the energy value of a quantum by the time interval, must
be extended into the Minkowski invariant product ω(~k )t−~k·~x = k·x, where the last expression denotes
the inner product of four-vectors with the four-dimensional Minkowski metric. Furthermore, since in
the present case we have an infinity of quantum operators labelled by the vector values ~k and which
are all on an equal footing, one should consider a general superposition of all such linear combinations
of the creation and annihilation operators with a ~k-independent weight. Hence finally, one is led to
consider the following operator, again in the Heisenberg picture, as the relativistic invariant extension
of (5),

φ̂(xµ) =

∫

(∞)

d3~k

(2π)32ω(~k )

[

a(~k )e−ik·x + a†(~k )eik·x
]

. (10)

Note that having rescaled the creation and annihilation operators by a factor (ω(~k ))1/2, the d3~k
integration measure includes the same dimensionful normalisation factor as in (5) for the harmonic
oscillator. The choice of numerical factor (2π)3 is made for later convenience. As a matter of fact, the
reason for the specific choice of normalisation in (8) is that the integration measure in (10), namely
d3~k/2ω(~k ), is invariant under Lorentz transformations, as may easily be checked. In other words, this
parametrisation of the operator φ̂(xµ) is manifestly Lorentz covariant.

Hence, associated to the algebra (8), one expects that the actual configurations of the correspond-
ing system is that of a real scalar field in spacetime! Indeed, in the classical limit, the combination
(10) defines a real number φ(xµ) attached at each spacetime point. In other words, an arbitrary
collection of identical relativistic free quantum point particles with causal and unitary propagation
corresponds to quanta of a single relativistic quantum field in Minkowski spacetime. Furthermore,
even though these particles display corpuscular properties by having definite energy-momentum val-
ues, their spacetime dynamical propagation also displays wavelike properties, since the field obeys the
following equation of motion,

[

∂2

∂t2
− ~∇2 +m2

]

φ̂(xµ) = 0, (11)

which is indeed a wave equation, known as the Klein-Gordon equation, and is nothing but the straight-
forward relativistic invariant extension of the equation of motion for the harmonic oscillator. Likewise,
the corresponding classical action principle thus reads, in a manifestly Lorentz invariant form,

S[φ] =

∫

dt

∫

(∞)
d3~x

[

1

2

(

∂

∂t
φ

)2

− 1

2

(

~∇φ
)2

− 1

2
m2φ2

]

. (12)

From this point of view, the configuration space that has been identified corresponds to an infinite
set of harmonic oscillators sitting all adjacent next to one another in the three dimensions of space,
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and while they each oscillate away from their equilibrium position, the gradient term ~∇φ in the action
or in the equation of motion induces a coupling between adjacent oscillators, thereby leading to a
propagating wave behaviour of the system in space as a function of time. This term in ~∇φ is required
by Lorentz invariance from the similar term in ∂φ/∂t which is necessary for the time dependent
dynamics of the system.

In conclusion, having considered the possibility to describe an arbitrary collection of identical
relativistic free quantum spinless point particles of definite energy-momentum and mass which may be
created and annihilated locally in Minkowski spacetime, we are naturally led to consider a formulation
which is that of a local real relativistic scalar field in spacetime with its dynamical wave properties,
whose action is real under complex conjugation (which guarantees quantum unitarity), Poincaré in-
variant (necessary for causality, and also leading to states of definite energy-momentum and angular
momentum, which are the conserved Noether charges for the Poincaré invariance group of Minkowski
spacetime), and finally local in spacetime (thus guaranteeing spacetime causality and locality of par-
ticle propagation, and later on also for their interactions). At this stage, given the algebra (8), one is
only describing interactionless particles, since the complete space of energy eigenstates is the simple
tensor product over all ~k values of a Fock space representation, without any nonvanishing matrix
element of the Hamiltonian between different factors of this tensor product, which would otherwise
indeed represent energy-momentum exchange, namely interactions.

3.2 The classical free relativistic real scalar field

Let us thus consider as a classical system a real scalar field φ(x) over spacetime, whose dynamics is
governed by the spacetime local action

S[φ] =

∫

d4xµ L0(φ, ∂µφ), (13)

with the Lagrangian density

L0(φ, ∂µφ) =
1

2
ηµν∂µφ∂νφ− 1

2
m2φ2 =

1

2
(∂µφ)2 − 1

2
m2φ2. (14)

We shall apply to this system exactly the same procedure of canonical quantisation as has been
described in Section 2, and establish that we have indeed a formulation of free relativistic quantum
spinless particles of mass m. The infinite number of degrees of freedom is parametrised by φ(x0, ~x ),
and is thus labelled by the values of the space vector ~x. Note that there is an abuse in our notation
for the parameter m in the above Lagrangian density. At the classical level, only a length scale κ may
be introduced, leading to a quadratic term of the form φ2/κ2 rather than m2φ2 above. However, at
the quantum level, it will found that the field quanta possess an invariant mass given by m = ~c/κ,
which explains our abuse of notation at the classical level already.

In their manifestly Lorentz covariant form, the Euler-Lagrange equations read

∂µ
∂L0

∂(∂µφ)
− ∂L0

∂φ
= 0, (15)

or in the present case
[

∂µ∂
µ +m2

]

φ = 0, (16)

which is the Klein-Gordon equation. Through Fourier analysis, the general solution is readily estab-
lished, and may be expressed as

φ(xµ) =

∫

(∞)

d3~k

(2π)32ω(~k )

[

a(~k )e−ik·x + a∗(~k )eik·x
]

, (17)

a(~k ) and a∗(~k ) being complex integration constants, while in the plane wave contributions e∓ik·x the
value k0 = ω(~k ) is to be used.
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In order to quantise the system, let us first consider its Hamiltonian formulation. By definition,
the momentum conjugate to the field φ(x0, ~x ) at each point ~x in space is

π(x0, ~x ) =
∂L0

∂(∂0φ(x0, ~x ))
= ∂0φ(x0, ~x ), (18)

while the phase space degrees of freedom (φ(x0, ~x ), π(x0, ~x )) possess a Poisson bracket structure
defined by the canonical brackets at equal time x0

{φ(x0, ~x ), π(x0, ~y )} = δ(3)(~x− ~y ). (19)

The Hamiltonian density is

H0 = ∂0φπ − L0 =
1

2
π2 +

1

2

(

~∇φ
)2

+
1

2
m2φ2, (20)

while the Hamiltonian equations of motion follow as usual from the Hamiltonian H0 =
∫

(∞) d
3~xH0

(namely the sum of H0 over all degrees of freedom labelled by ~x) through the Poisson brackets. For
the elementary phase space degrees of freedom, one has,

∂0φ = π, ∂0π =
(

~∇2 −m2
)

φ, (21)

clearly leading back to the Klein-Gordon equation upon reduction of the conjugate momentum π.
Hence, given the solution (17) for the field φ(xµ), that for the conjugate momentum is

π(xµ) =

∫

(∞)

d3~k

(2π)32ω(~k )

(

−iω(~k)
) [

a(~k )e−ik·x − a∗(~k )eik·x
]

. (22)

On basis of these expressions, it is possible to also determine the Poisson bracket structure on
the space of integration constants a(~k ) and a∗(~k ), rather than on the phase space (φ(x0, ~x ), π(x0, ~x )).
A straightforward calculation finds for the only nonvanishing bracket,

{a(~k ), a∗(~k′)} = −i(2π)32ω(~k )δ(3)
(

~k − ~k′
)

, (23)

while the Hamiltonian then reads

H0 =

∫

(∞)

d3~k

(2π)32ω(~k )

1

2
ω(~k )

[

a∗(~k )a(~k ) + a(~k )a∗(~k )
]

, (24)

hence leading to the Hamiltonian equations of motion

ȧ(~k ) = −iω(~k )a(~k ), ȧ∗(~k ) = iω(~k )a∗(~k ), (25)

whose solutions are of course consistent with the explicit expressions already constructed above for
φ(xµ) and π(xµ).

3.3 The quantum free relativistic real scalar field

Canonical quantisation of the system in the Schrödinger picture, at the reference time t0 = x0
0 = 0,

is straightforward. The space of quantum states |ψ〉, with hermitean inner product 〈χ|ψ〉, provides a
representation of the Heisenberg algebra

[

φ̂(~x ), π̂(~y )
]

= iδ(3) (~x− ~y ) . (26)
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In terms of the following representation for the quantum field operators in the Schrödinger picture at
x0

0 = 0,

φ̂(~x ) =
∫

(∞)
d3~k

(2π)32ω(~k )

[

a(~k )ei
~k·~x + a∗(~k )e−i~k·~x

]

,

π̂(~x ) =
∫

(∞)
d3~k

(2π)32ω(~k )

(

−iω(~k )
) [

a(~k )ei
~k·~x − a∗(~k )e−i~k·~x

]

,

(27)

alternatively one has the Fock space algebra

[

a(~k ), a†(~k′)
]

= (2π)32ω(~k)δ(3)
(

~k − ~k′
)

. (28)

The Schrödinger equation for the time evolution of quantum states in the Schrödinger picture
also reads

i~
d

dt
|ψ, t〉 = Ĥ0|ψ, t〉 , (29)

with the quantum Hamiltonian given by

Ĥ0 =

∫

(∞)
d3~x

[

1

2
π̂2 +

1

2

(

~∇φ̂
)2

+
1

2
m2φ̂2

]

. (30)

Note that this operator does not suffer any operator ordering ambiguity. On the other hand, in terms
of the Fock space operators, the same quantum Hamiltonian reads

Ĥ0 =

∫

(∞)

d3~k

(2π)32ω(~k )

1

2
ω(~k )

[

a†(~k )a(~k ) + a(~k )a†(~k )
]

, (31)

which leads to finite matrix elements only after normal ordering of the creation and annihilation
operators, a procedure which is denoted by double dots on both sides of a quantity and is defined
by commuting all operators so that all creation operators are to the left of all annihilation operators,
such as for example

: a(~k )a†(~ℓ ) : = a†(~ℓ )a(~k ), : a†(~k )a(~ℓ ) : = a†(~k )a(~ℓ ). (32)

Applying this operator ordering prescription to the above expression for Ĥ0, one thus finds in the Fock
space representation the normal ordered Hamiltonian

Ĥ0 =

∫

(∞)

d3~k

(2π)32ω(~k )
ω(~k ) a†(~k )a(~k ), (33)

while an infinite normal ordering constant contribution is then subtracted away, namely

∫

(∞)

d3~k

(2π)32ω(~k )

1

2
ω(~k )(2π)32ω(~0 )δ(3)(~0). (34)

This contribution corresponds to the sum of all vacuum quantum fluctuations of all the ~k-modes of
the scalar field. Provided the system is not coupled to gravity, such a renormalisation of the energy
eigenvalues is without physical consequence. Nonetheless, it should imply that the two representations
of the quantised system, namely that achieved through the Heisenberg algebra for the fields, or that
achieved through the Fock algebra for its modes, need no longer be unitarily equivalent for such a
system with an infinite set of degrees of freedom, in contradistinction to the situation for a system
with a finite number of degrees of freedom such as the one-dimensional harmonic oscillator.

It thus appears that one might have available two possibly physically inequivalent approaches
to the quantisation of this system, the first based on the representations of the field Heisenberg
algebra (26), and the second based on the representations of the field Fock space algebra (28). Let us
first consider the Heisenberg algebra realisation, say in its configuration space representation. In the
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Schrödinger picture, the basis of states is then spanned by states |φ〉 which are associated to specific
classical field configurations φ(~x ) defined over space at the reference time x0

0 = 0, and which are
eigenstates of the quantum field operator φ̂(~x ),

φ̂(~x ) |φ〉 = φ(~x ) |φ〉. (35)

The values for the vector ~x being the label for degrees of freedom, at least formally one has the
following normalisation of these states, together with the associated spectral resolution of the unit
operator,

〈φ|φ′〉 =
∏

~x

δ
(

φ(~x ) − φ′(~x )
)

, I =

∫ ∞

−∞

∏

~x

dφ(~x ) |φ〉〈φ|, (36)

in direct analogy with the situation for a system with a finite number of degrees of freedom. Hence,
arbitrary quantum states |ψ〉 possess now a configuration space wave functional representation Ψ[φ]
defined by

Ψ[φ] = 〈φ|ψ〉 , |ψ〉 =

∫ ∞

−∞

∏

~x

dφ(~x ) |φ〉Ψ[φ], (37)

which thus represents the probability amplitude for observing the given quantum state |ψ〉 in the
classical field configuration φ(~x ), again in direct analogy with the meaning of the configuration space
wave function for a finite dimensional system.

Furthermore, since the field operators φ̂(~x ) and π̂(~x ) possess the following configuration space
representations,

〈φ|φ̂(~x )|ψ〉 = φ(~x )Ψ[φ], 〈φ|π̂(~x )|ψ〉 = −i~ δ

δφ(~x )
Ψ[φ], (38)

the action of the quantum Hamiltonian on quantum states in their configuration space wave functional
representation is

〈φ|Ĥ0|ψ〉 =

∫

(∞)
d3~x

1

2

[

−~
2

(

δ

δφ(~x )

)2

+
(

~∇φ(~x )
)2

+m2φ2(~x )

]

Ψ[φ]. (39)

This Schrödinger functional representation of a quantum field theory could prove to be an
appropriate framework in which to attempt a nonperturbative quantisation. Even though it may
well be that for a noninteracting field, which is the above situation, this approach would be unitarily
equivalent to the Fock space one to be discussed presently, it is far from clear that such an equivalence
should survive the introduction of nonlinear interactions. Given the wide success of the perturbative
treatment of particle interactions, based on the Fock space quantisation of a field theory briefly
described hereafter, such nonperturbative functional quantisations have not been developed to the
same extent, making this issue a worthwhile topic of further investigation, especially when it comes
to nonlinear field theories whose space of classical solutions includes topological configurations such
as solitons and higher dimensional monopole-like configurations.

Turning now to the field Fock space algebra (28) and its representations, it is clear that the
space of states is spanned by all possible n-particle states (n = 0, 1, 2, · · · ) of arbitrary momentum
values ~ki (i = 1, 2, · · · , n), which are built through the action of the creation operators a†(~k ) from the
normalised Fock vacuum |0〉, itself annihilated by the a(~k ) operators, a(~k )|0〉 = 0,

|~k1, ~k2, · · · , ~kn〉 = N(~k1, ~k2, · · · , ~kn) a†(~k1) a
†(~k2) · · · a†(~kn)|0〉, (40)

where N(~k1, ~k2, · · · , ~kn) denotes some normalisation factor. In particular, the 1-particle quantum
states correspond to

|~k〉 = a†(~k )|0〉, 〈~k|~k′〉 = (2π)32ω(~k ) δ(3)
(

~k − ~k′
)

. (41)

In addition, given the manifest spacetime invariance of the system under the Poincaré group, the
quantum operators P̂µ and M̂µν associated to the conserved Poincaré Noether charges generate the
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Poincaré algebra on the space of quantum states, the latter thus getting organised into irreducible rep-
resentations of that symmetry. The eigenstates of these operators, thus of definite energy-momentum,
angular-momentum and invariant mass, define the 1-particle states of the quantised field. Clearly,
these eigenstates must correspond to the 1-particle quantum states |~k〉 constructed above, which is
indeed the case. For instance, the energy-momentum operator in Fock space is given by

P̂µ =

∫

(∞)

d3~k

(2π)32ω(~k )
kµ a†(~k )a(~k ), (42)

so that the 1-particle states |~k〉 are eigenstates of this operator, namely P̂µ|~k〉 = kµ|~k〉, with the
eigenvalues

P̂ 0 : k0 = ω(~k ); ~̂P : ~k. (43)

In particular, the relativistic invariant mass eigenvalue of these states is m2, showing that the param-
eter m indeed measures the mass of the quanta of the quantised field. Likewise for the generalised
angular-momentum operator M̂µν , the 1-particle states |~k〉 possess an eigenvalue which measures
their orbital angular-momentum, thus expressing the fact that the quanta associated to the scalar
field φ(xµ) are indeed spinless particles. In order to obtain 1-particle states with a nontrivial spin
value, one has to use fields which transform nontrivially under the Lorentz group SO(3,1), such as
a vector field leading then to particles of unit spin or helicity (the latter in the massless case), or a
spinor field (whether a Weyl, a Dirac or a Majorana spinor) leading to particles of 1/2 spin or helicity
values (Grassmann odd variables must be used to parametrise spinor field degrees of freedom, leading,
at the classical level, to Grassmann graded Poisson bracket structures and, at the quantum level, to
anticommutation rather than commutation rules for fermionic quantum operators).

Hence, as expected on basis of the heuristic construction of Section 3.1, the Fock space rep-
resentation of a relativistic quantum field theory (whose action is quadratic in the field) shows that
the physical content of such a system is that of an arbitrary ensemble of identical free relativistic
quantum point particles of definite mass, energy- and angular-momentum. The interpretation of the
field quanta as being such relativistic particles is made consistent by the manifest Poincaré invariance
of the action principle.

The above Fock space construction of the quantised field is performed within the Schrödinger
picture at the reference time x0

0 = 0. Within the corresponding Heisenberg picture, states are time
independent whilst the quantum operators, among which the basic field φ̂(~x ), are rather now explicitly
time dependent and carry the whole dynamics of the system. Given the quantum Hamiltonian (33),
it is straightforward to show, based exactly on the definition of the time dependence of operators
in that picture, that in the Heisenberg picture the relativistic quantum scalar field is given precisely
by the expression (10) which was constructed heuristically in Section 3.1. Hence, it is precisely the
ordinary rules of canonical quantisation, and only these, which, when applied to the classical system
describing the dynamics of a relativistic field theory, lead to a framework which readily accounts for all
the observed physical spacetime properties of relativistic quantum particles including the possibility of
their creation and annihilation, which is possible only within a formalism which includes both special
relativity and quantum mechanics.

In particular, acting with the quantum field φ̂(xµ) in the Heisenberg picture on the Fock vacuum,
one obtains a plane wave superposition of 1-particle states of definite momentum,

φ̂(xµ)|0〉 =

∫

(∞)

d3~k

(2π)32ω(~k )
eik·x |~k 〉. (44)

Such a state may thus be viewed as the quantum configuration of the field such that one particle has
been created exactly at the spacetime point xµ, which, as a consequence of Heisenberg’s uncertainty
principle, thus possesses a totally undertermined energy-momentum value with its characteristic plane
wave probability amplitude. More generally, this interpretation also enables one to construct the
probability amplitude for the process in which one particle is created at a given initial spacetime
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point xµ
i and then annihilated at the final point xf , while it propagates in a causal manner between

these two positions. This quantity is thus defined by the time-ordered two-point function of the field
operator,

〈0|T
(

φ̂(xf )φ̂(xi)
)

|0〉 = θ(x0
f − x0

i ) 〈0|φ̂(xf )φ̂(xi)|0〉

+ θ(x0
i − x0

f ) 〈0|φ̂(xi)φ̂(xf )|0〉,
(45)

(θ(x) is the usual step function such that θ(x > 0) = 1 and θ(x < 0) = 0) and corresponds to
what is called the Feynman propagator for single field quanta. Using the explicit expansion (10)
of the field operator in the Heisenberg picture in terms of the creation and annihilation operators,
it is straightforward to establish that the Feynman propagator is given by the manifestly spacetime
invariant expression

〈0|T
(

φ̂(xf )φ̂(xi)
)

|0〉 =

∫

(∞)

d4kµ

(2π)4
e−ik·(xf−xi)

i

k2 −m2 + iǫ
, (46)

where the infinitesimal parameter ǫ > 0 is introduced in order to specify the contour integration in the
complex plane for the energy contribution k0, so that the correct causal structure of this propagator is
recovered. This quantity is also one of the Green functions for the Klein-Gordon operator [∂µ∂

µ +m2].

Hence, the marriage of special relativity and of quantum mechanics, namely of the constants
c and ~, leads in a most natural way to a fundamental convergence and unification of concepts:
relativistic quantum particles are nothing but the quanta of relativistic quantum fields, displaying at
the same time the corpuscular properties of particles and the wavelike properties of the spacetime
dynamics of fields. This is indeed a most powerful and all encompassing outcome of the unification
of relativity and quantum mechanics. Among other consequences, it explains at once why identical
particles are necessarily indistinguishable, since they simply correspond to actual physical quantum
fluctuations of a single physical entity filling all of spacetime, namely the corresponding relativistic
quantum field, and which may be excited or absorbed, namely created or annihilated, by acting
on the system through some interaction with another field. In fact, and as shall become clear in
Section 4, even interactions, namely changes in the total energy-momentum content of given quantum
field states, are understood in terms of exchanges of such 1-particle quanta between given quantum
states. The notion of a force acting on a relativistic particle, or of a potential energy contributing to
the Hamiltonian of a quantum system, is also superseded by that of fields filling all of spacetime, and
interacting with one another through local spacetime couplings, thereby leading to the exchanges of
1-particle quanta. Other profound consequences of the relativistic quantum field picture of physical
reality are the spin-statistics connection (namely the fact that integer spin particles obey the Bose-
Einstein statistics while half-integer spin particles the Fermi-Dirac statistics), the invariance of any
relativistic quantum field theory under the combined product of the parity, time reversal and charge
conjugation transformations (the so-called CPT theorem), and the particle/antiparticle duality (only
this latter point is discussed explicitly hereafter).

It is clear that the Fock space quantisation of field theory is ideally suited for a perturbative
description of interactions, namely by starting with a situation with only free quanta, corresponding
to an action which is quadratic in the fields, and then adding as perturbations to be summed through
a series expansion further corrections involving locally in spacetime higher order products of the fields
and their couplings, thus leading to successive perturbative corrections to quantum matrix elements
of specific observables which may be viewed in terms of specific 1-particle exchanges among quantum
states. This procedure will briefly be outlined in Section 4. On the other hand, the Schrödinger
functional quantisation of a field theory is from the outset nonperturbative in character, and may thus
be better suited to study nonperturbative issues in quantum field theory, in ways that have not been
explored to the same extent as the perturbative picture of quantum field theory.

A final remark may also be in order concerning some vocabulary. Note that exactly the same
methods of canonical quantisation are applied whether for a finite or an infinite dimensional dynamical
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system. Often in the literature, one finds written that the first situation is that of “first quantisation”,
while the second that of “second quantisation”. Furthermore, there is also quite often mention of
“negative energy states” and “negative probabilities”, which must be circumvented through “second
quantisation”. The fact of the matter is that this vocabulary is due to an historical accident. Initially,
one wished to develop a relativistic extension of the nonrelativistic Schrödinger equation for, say, the
harmonic oscillator and its configuration space wave function. Doing so, one unavoidably encounters
diverse problems of negative energy and/or probability states, which defy a consistent physical in-
terpretation. Considering then that the “relativistic wave function” itself needs to be quantised, one
discovered that these issues are evaded altogether, leading in fact to the quantum field theory repre-
sentations that were described above. In other words, the correct physical point of view is that, rather
than quantising some relativistic wave function, from the outset one is in fact (first!) quantising a
classical field theory which obeys some relativistic invariant wave equation, and at no point whatsoever
do issues of “negative energy or probability states” arise. In the same way that quantum mechanics,
whether relativistic or not, is the quantisation of finite dimensional systems whose configurations rep-
resent as a function of time, say, the positions in space of a finite collection of particles, quantum field
theory is the quantisation of infinite dimensional systems whose configurations are, say, the values
taken by a finite collection of fields in space as a function of time, all in a spacetime invariant manner
in the case of a relativistic field theory.

4 Interactions and the Gauge Symmetry Principle

Having understood how the dynamics of a relativistic quantum field whose Lagrangian density is
quadratic in the field in fact describes a system whose quantum states correspond to an arbitrary
number of identical free relativistic quantum particles of definite energy-momentum, spin and in-
variant mass, it becomes possible to envisage an extension of this formalism in order to account for
interactions among such particles, namely the exchange of energy and momentum between such quan-
tum states through the creation and annihilation of the associated quanta. Clearly, such a formulation
is perturbative in character, since the free particle picture provides the starting point for a perturba-
tive expansion in which an increasing number of interaction points are included for a given physical
process. The purpose of the present section is to briefly outline how this point of view, which has
proved to be so powerful and relevant to high energy particle physics and their fundamental interac-
tions except for the gravitational one, has led, on the one hand, to the local gauge symmetry principle
as an essential requirement for any theory of the fundamental interactions, and on the other hand, to
the Feynman diagrammatic representation of physical processes through a perturbative expansion of
the associated probability amplitudes order by order in the exchanges of interacting particles.

4.1 Field coupling and interactions

For definitiness, the discussion to be presented uses the simplest of examples, namely that of an
interacting real scalar field φ(xµ) whose Lagrangian density now includes also a quartic term in the
potential contribution, in addition to the quadratic contribution considered so far,

L(φ, ∂µφ) =
1

2
(∂µφ)2 − 1

2
m2φ2 − 1

4!
λφ4, (47)

λ > 0 being a real positive parameter which turns out to correspond to a coupling constant measuring
the strength of a spacetime local interaction in which four quanta of the field φ(x) are involved in a
perturbative expansion. Compared to the free field case, we thus have

L = L0 + Lint, Lint = − 1

4!
λφ4, (48)

L0 being the free field Lagrangien density whose quantisation has been discussed above, while Lint

corresponds to an additional contribution associated to some specific interaction. The canonical
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quantisation of such a system follows the same rules as those applied in the free field case, with in
particular the fundamental Poisson brackets

{φ(x0, ~x ), π(x0, ~y )} = δ(3) (~x− ~y ) , (49)

which remain those of the free field case. Note that the conjugate momentum is still given by the
relation π(x) = ∂0φ(x) (had the interacting Lagrangian Lint included some derivative coupling of the
field φ, the conjugate momentum would have been different). However, the canonical Hamiltonian
density acquires an additional contribution directly related to and determined by Lint, namely

H = 1
2π

2 + 1
2

(

~∇φ
)2

+ 1
2m

2φ2 + 1
4!λφ

4

= H0 + Hint, Hint = −Lint = 1
4!λφ

4.

(50)

The restriction on the coupling constant λ > 0 stems from the requirement that the energy spectrum of
the system be bounded below, since otherwise no stable ground state may exist. The same requirement
also explains why a purely φ3 term, without the quartic contribution in Lint, is not considered in the
above discussion, even though the perturbative expansion to be described presently is then somewhat
simpler to implement in actual calculations.

Consequently, the canonical quantisation of the system, even in the presence of the interaction
contribution, may still be performed, say, in the Fock space representation in terms of the creation and
annihilation operators of free particle quanta, with a specific definition of a self-adjoint Hamiltonian
operator Ĥ =

∫

(∞) d
3~x Ĥ through normal ordering in these operators. However, what then becomes

a nontrivial issue is the actual diagonalisation of this Hamiltonian, namely the identification of the
actual spectrum of the quantised interacting field theory. A perturbative approach in the parameter
λ enables an order by order identification of the quantum physical content of such a system and of its
physical properties, starting from the free field quanta.

The scattering matrix

In practical terms, an extremely important method for the experimental investigation of the
quantum relativistic properties of physical systems is that of scattering measurements. Different
components of a given system are prepared in a given initial configuration in causally separated
regions of space, and are then made to scatter within a given local neighbourdhood of an interaction
point, from where interaction products emerge whose properties are then measured and analysed, in
order to infer the specific characteristics of the interactions at work and responsible for the observed
process. In other words, all the physical information related to these interactions is encoded into the
corresponding scattering probability amplitude.

Given such a general scheme, the basic implicit idea is that the interaction takes place over
a region of space whose extent is so small that for all practical purposes the interactions are only
short-ranged, so that beyond that interaction region the separated components of the system are free
from interactions. In a classical picture, such components may be viewed as independent free particles
each following asymptotically a straight trajectory. When the interactions are “turned off”, these
trajectories are not modified as they pass one another, and are thus not scattered. However, when the
interaction is “turned on”, the more the particles approach one another, the more their trajectories
deviate from a straight path, leading in the asymptotic final state to a scattered configuration of
straight trajectories as the final state components which emerge from the spatial interaction region.
In other words, the characterisation of a nontrivial scattering process proceeds by extrapolating to
both the infinite past and the infinite future the time dependent dynamics of a given configuration
of the system, and by comparing the asymptotic states to what they would have been had there not
been any interaction.

Clearly, the same heuristic understanding of the characterisation of the scattering process applies
at the quantum level, by comparing the time dependence of given in- and out-states in the presence or
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absence of some given interaction, provided the initial asymptotic states are identical. The characteri-
sation of the scattering process, and of the interaction responsible for it, is then obtained by identifying
the operator in Hilbert space which leads to this transition between the in- and out-asymptotic states.
This is the scattering operator S whose matrix elements are thus the quantities of interest, which
represent the probability amplitude for a given physical scattering process to occur.

Let us translate this reasoning in mathematical terms. Concentrating first on the initial state,
let us represent the free Hamiltonian by Ĥ0, the total Hamiltonian including interactions by Ĥ, and
assume to be working in the Schrödinger picture at some reference time t0. A given state |ψin, t0〉 of
the free theory is then evolved backwards in time into the asymptotic in-state

|ψin,−∞〉 = lim
t→−∞

e−i(t−t0)Ĥ0 |ψin, t0〉 = lim
t→−∞

|ψin, t〉, (51)

while a given state |ψ, t0〉 of the interacting theory is likewise propagated back in the infinite past
according to

|ψ,−∞〉 = lim
t→−∞

e−i(t−t0)Ĥ |ψ, t0〉 = lim
t→−∞

|ψ, t〉. (52)

However, these two asymptotic states should correspond to an identical asymptotic quantum in-state,
so that the asymptotic correspondence is defined by the relation

|ψ,−∞〉 = |ψin,−∞〉. (53)

Likewise for the asymptotic quantum out-state, one has the identification

|χ,+∞〉 = |χout,+∞〉, (54)

where
|χout,+∞〉 = lim

t→+∞
e−i(t−t0)Ĥ0 |χout, t0〉 = lim

t→+∞
|χout, t〉, (55)

|χ,+∞〉 = lim
t→+∞

e−i(t−t0)Ĥ |χ, t0〉 = lim
t→+∞

|χ, t〉. (56)

Note that behind this construction lies the fact that the quantum theories based on Ĥ0 and Ĥ share
a common space of quantum states, namely an identical representation space of a common algebraic
structure of commutation relations for the fundamental degrees of freedom. The scattering operator,
whose matrix elements we are about to characterise, is thus an operator acting withing this common
space of quantum states, which must reduce to the identity operator in the absence of any interaction,
Ĥ = Ĥ0.

Given the above formulation, it is clear that the transition probability amplitude between the
asymptotic in- and out-states of the interacting theory is simply given by

〈χ, t|ψ, t〉 = 〈χ, t0|ψ, t0〉, (57)

the value of this matrix element being independent of the time t at which it is evaluated since the

evolution operator e−i(t−t0)Ĥ for the interacting theory defines a unitary isomorphism between all
Schrödinger pictures for all values of t. However, this matrix element may also be expressed in terms
of the in- and out-states of the free theory, since the asymptotic in-states for either theory are identical.
A direct substitution of the above relations then finds

〈χ, t|ψ, t〉 = 〈χ, t0|ψ, t0〉 = 〈χout, t0|S|ψin, t0〉, (58)

where the scattering operator S is defined by the asymptotic limits

S = lim
t∓→∓∞

M(t+, t0)M
†(t−, t0), (59)

with
M(t, t0) = ei(t−t0)Ĥ0 e−i(t−t0)Ĥ . (60)

27



Note that in the absence of any interaction, Ĥ = Ĥ0, the scattering operator S indeeds reduces to
the identity operator. Since the operator M(t, t0) plays such a central role in the construction of the
scattering operator S, it is important to obtain alternative expressions for it. In particular, one readily
establishes the differential equation

i∂tM(t, t0) = ei(t−t0)Ĥ0

[

Ĥ − Ĥ0

]

e−i(t−t0)Ĥ

= ei(t−t0)Ĥ0 Ĥint(t0) e
−i(t−t0)Ĥ0 M(t, t0)

= Ĥ
(I)
int (t)M(t, t0),

(61)

having introduced

Ĥ
(I)
int (t) = ei(t−t0)Ĥ0 Ĥint(t0) e

−i(t−t0)Ĥ0 , Ĥint(t0) = Ĥ − Ĥ0. (62)

Note that this latter definition coincides with that of the Heisenberg picture associated to the free
Hamiltonian Ĥ0. Since in the interacting theory the Heisenberg picture should be defined in a likewise
manner but in terms of the full Hamiltonian Ĥ rather than the free Hamiltonian Ĥ0, one refers to the
“interaction picture” as being associated to the general definition of time dependent operators O(I)

given by

O(I)(t) = ei(t−t0)Ĥ0 O(t0) e
−i(t−t0)Ĥ0 , (63)

where O(t0) is the operator as constructed through canonical quantisation of the interacting theory
in its Schrödinger picture.

In other words, in the interaction picture, quantum states as well as operators carry a split time
dependence, such that the one carried by the quantum states is solely induced by the interactions and
the interacting Hamiltonian Ĥint, while the one carried by the quantum operators is solely induced by
the time dependence related to the free field dynamics and the free Hamiltonian Ĥ0. In the interaction
picture, any time dependence in the quantum states is totally ascribed to the interactions only.

Returning to the equation (61) characterising the operator M(t, t0), one sees that its solution
may also be expressed in the form

M(t, t0) = T e
−i

R t

t0
dt′ Ĥ

(I)
int (t′)

, (64)

where the symbol T in front of the exponential in the r.h.s. of this expression stands for the time-
ordered product and exponential in which products of time-dependent operators are integrated from
left to right in decreasing order of their time arguments (this is indeed required given that the operator

M(t, t0) is to the right of Ĥ
(I)
int (t) in (61)).

Hence, using this solution for the operator M(t, t0), the scattering operator acquires the expres-
sion

S = T e
−i

R
∞

t0
dtĤ

(I)
int (t)

T e−i
R t0
−∞

dtĤ
(I)
int (t) = T e

−i
R
∞

−∞
dt

R
(∞) d3~x Ĥ(I)

int , (65)

which, in the absence of any derivative coupling in the interacting Lagrangian density, so that Lint =
−Hint, finally reduces to

S = T e
−i

R
(∞)

d4xµ Ĥ(I)
int = T e

i
R
(∞)

d4xµ L̂(I)
int . (66)

In this form, it should be clear why this formulation of any scattering process is ideally suited
for a perturbative treatment. Since scattering matrix elements are given by matrix elements of the
operator S for free field external states, see (58), it suffices to consider the creation and annihilation
mode expansions of the field and its conjugate momentum in the interaction picture, and substitute
these in the expressions for the interacting Lagrangian and Hamiltonian densities in the interaction
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picture. In particular, these fields in the interaction picture retain their expressions valid for the
Heisenberg picture of the free field theory. One has

φ̂(I)(t, ~x ) = ei(t−t0)Ĥ0 φ̂(t0, ~x ) e−i(t−t0)Ĥ0 ,

π̂(I)(t, ~x ) = ei(t−t0)Ĥ0 π̂(t0, ~x ) e−i(t−t0)Ĥ0 ,

(67)

with the mode expansions

φ̂(I)(x) =

∫

(∞)

d3~k

(2π)32ω(~k )

[

a(~k )e−ik·x + a†(~k )eik·x
]

, (68)

π̂(I)(x) =

∫

(∞)

d3~k

(2π)32ω(~k )

(

−iω(~k )
) [

a(~k )e−ik·x − a†(~k )eik·x
]

, (69)

while the creation and annihilation operators still obey the usual algebra

[

a(~k ), a†(~ℓ )
]

= (2π)32ω(~k )δ(3)
(

~k − ~ℓ
)

, (70)

since canonical quantisation in the Schrödinger picture of the interacting theory still requires the
commutation relations

[

φ̂(t0, ~x ), π̂(t0, ~y )
]

= iδ(3) (~x− ~y ) . (71)

Furthermore, once such a substitution has been effected, a straightforward expansion of the time-
ordered exponential (65) defining the scattering operator in terms of the interacting Hamiltonian
in the interaction picture leads to an expansion in powers of the coupling coefficient λ, namely a
perturbative representation of the probability amplitude associated to a given set of external states
in terms of successive exchanges of free particle quanta being created and annihilated through the
interaction couplings of the fields as they contribute to the interacting Hamiltonian.

In particular, it should be clear that successive contractions of these creation and annihilation
operators as they are commuted past one another in the evaluation of the matrix elements, all in a
manner consistent with the causal time ordering implied by the solution (65), always lead precisely
to the time-ordered two-point function of the field operator in the interaction picture, namely the
Feynman propagator computed previously for the free field theory,

〈0|T
(

φ̂(I)(x)φ̂(I)(y)
)

|0〉 =

∫

(∞)

d4kµ

(2π)4
i

k2 −m2 + iǫ
e−ik·(x−y), (72)

where |0〉 still denotes the perturbative normalised Fock vacuum annihilated by the operators a(~k ),
a(~k )|0〉 = 0.

Even though we cannot consider here a discussion of perturbation theory in any detail what-
soever, once put within such a framework, it takes little effort of imagination to understand how a
systematic set of rules for such a perturbative expansion and evaluation of scattering matrix elements
may be identified, thus providing an efficient approach towards the determination of scattering cross
sections of direct relevance to experimental results. Such a discussion would consist in a whole set
of lectures on their own, which is not the purpose of the present notes and may be found exposed
in great detail in any quantum field theory textbook. Nonetheless, from the above description, it
should be clear that Fock space quantisation of relativistic quantum field theory is ideally suited for
a perturbative representation of interacting relativistic quantum particles, and that this perturbation
theory approach is directly based on the interacting Hamiltonian and Lagrangian contribution to the
total Lagrangian density, namely all those contributions which are not purely quadratic in the fields,
the latter on their own being relevant to the description of free relativistic quantum particles.
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Perturbation theory

In spite of the fact that this is not the place for a detailed presentation of perturbative quantum
field theory, let us nevertheless highlight some points of relevance to the discussion hereafter, partic-
ularising again to the simplest Lint = −λφ4/4! interacting Lagrangian. As far as scattering processes
are concerned, all possible results are encoded into the scattering operator

S = I +

∞
∑

n=1

1

n!
T

(

−i
∫

(∞)
d4xµ Ĥ(I)

int (x)

)n

, (73)

where now the interacting Hamiltonian density in the interaction picture is defined according to the
usual normal ordering prescription for the creation and annihilation operators a†(~k ) and a(~k ),

Ĥ(I)
int (x) =

1

4!
λ : φ̂4

(I)(x) : . (74)

Clearly, when considering the scattering operator in this series expanded form and the evaluation
of its matrix elements for external states associated to definite numbers of incoming and outgoing
particles, time ordering of operator products commuted with one another implies the contribution of
the Feynman propagator which, in momentum space, simply leads to the following contribution for
any internal propagating line connecting two interaction vertices at which particle quanta are created
or annihilated,

i

k2 −m2 + iǫ
. (75)

Likewise, whenever the operator Ĥ(I)
int(x) contributes at a given order of the perturbative expansion,

it implies a spacetime local interaction in which four particle quanta are either created or annihilated,
with an amplitude given by the factor

−iλ, (76)

up to some combinatorics factor depending on the topology of the associated diagram.

In other words, it is possible to translate the mathematical expression for the relevant matrix
element evaluation into a diagrammatic representation in which internal lines are connected to in-
teraction vertices, and for which the above contributions are then multiplied with one another, and
integrated over internal momenta in a manner such as to obey the rules of energy-momentum conser-
vation at each vertex, in order to determine the associated probablity amplitude. These rules relating
such Feynman diagrams to the required mathematical quantity are the Feynman rules of perturba-
tive quantum field theory. In the specific case of the λφ4/4! scalar field theory, the above discussion
thus establishes that these rules consist only of the single interaction vertex accompanying the scalar
Feynman propagator. In principle, given such rules, any scattering amplitude for whatever physical
process may be computed to an arbitrary order in the perturbative expansion in the coupling constant
λ.

As far as we are concerned, the main conclusion to be drawn from the above is that once
relativistic quantum fields are coupled to one another through local spacetime couplings, such as
Lint = −λφ4/4!, one in facts has made available within a perturbative picture a formalism in which
local and causal quantum interactions are directly understood in terms of exchanges of quantum
particles free to propagate between interaction vertices that occur locally in spacetime but at arbitrary
positions which are integrated over when they are not observed. The marriage of ~ and c leading
to quantum field theory as the natural framework for the description of relativistic quantum point
particles also implies a physical understanding of the physical origin of forces and interactions simply
as following from the spacetime local couplings of fields, which also translate in the dual corpuscular
picture into a process in which particles are being created, annihilated and exchanged, thereby leading
to changes in their energy-momentum, hence to their interactions. The mysterious action at a distance
of classical mechanics is forever gone, superseded by relativistic quantum fields which provide a natural
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framework not only for a unified description both of the corpuscular properties of matter and of the
wavelike properties of their spacetime dynamics, but also a unified understanding of the fundamental
quantum interactions in terms of both spacetime local couplings of fields and causal exchanges of
particle quanta, all in a manner consistent with the principles of special relativity, of unitary quantum
mechanics, and of causality.

However, this amazing convergence of physical concepts based on a few general basic principles
comes with a price. When considering the perturbative expansion of scattering matrix elements, one
soon comes across loop diagram contributions in which one must integrate over the internal momenta
running around closed loops. For instance when considering the propagation of a single particle
quantum, the first order correction to the propagator is obtained by inserting into it the four-point
vertex λφ4/4 and then contracting two of its four external lines with one another, leading to a 1-loop
contribution with the factor

(−iλ)

∫

(∞)

d4pµ

(2π)4

(

i

p2 −m2 + iǫ

)

, (77)

the origin of each of the factors in parentheses being obvious, while the closed loop propagator must
be integrated over the associated energy-momentum. Likewise, when considering a 2 → 2 scattering
process with two initial and two final particles, beyond the nonscattering and one interaction vertex
contributions, there appears a 1-loop correction in which two 4-point vertices are inserted with two
lines of each being contracted in pairs with two lines of the other. The corresponding contribution is
given by

(−iλ)2
∫

(∞)

d4pµ

(2π)4

(

i

p2 −m2 + iǫ

) (

i

(p+ k)2 −m2 + iǫ

)

, (78)

where pµ is again the energy-momentum running around the closed loop (say, that running through
one of the two internal contracted lines), while kµ is the total external energy-momentum of the two
initial or final particles (k + p being then the energy-momentum running through the other internal
line).

The characteristic feature of such contributions, which arise whenever closed loops appear in a
diagram, is their divergence for large values of the internal momentum, namely in the ultra-violet at
small distances. The fundamental reason for this feature is that interactions occur locally in spacetime
at given points where the fields are multiplied with one another. In order to perform calculations
nonetheless, one has to introduce some regularisation procedure to tame such divergencies, and hope
that at the very end, when all contributions are summed up again, all the divergent contributions would
combine is such a manner that physical observables remain nevertheless finite, even if affected by finite
renormalisation. Many different regularisation procedures have been developed, and this is not the
place to discuss such issues. The most straightforward one is to introduce an upper cut-off value Λc

in the momentum integration, to keep track of the different types of divergencies that may arise. For
instance, the 1-loop correction to the scalar field propagator given above leads to a quadratic divergence
proportional to Λ2

c , while that to the 2 → 2 scattering process is only logarithmically divergent and
proportional to ln Λc, as may easily be seen through simple power counting and dimensional analysis
of the relevant expressions.

The crucial issue thus arises as to which are the interacting quantum field theories which, in
a perturbative quantisation, lead to physically meaningful and thus finite predictions for scattering
processes, in spite of the existence of these ultraviolet short distance higher-loop divergencies. In
practical terms, and to put it into just a few words, here is how the procedure works. Given any
specific regularisation procedure, order after order in perturbation theory, one needs to add further and
further corrections (“counterterms”) to the initial Lagrangian density, in order to introduce additional
contributions to scattering amplitudes such that the perturbative series summed up to the given
order remains finite when the regulator is removed, thereby leading to a finite physical result, even
though the basic quantities appearing separately in the renormalised Lagrangian may be divergent.
However, if the number of the required countertems grows with the order in perturbation theory,
no specific prediction remains possible, since each new counterterm requires the specification of a
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new coupling constant whose value may be inferred only from experiment. Hence, a quantum field
theory possesses any predictive power provided only a finite number of counterterms is required to
render the renormalised scattering amplitudes to whatever order of perturbation theory finite and
thus physical. Field theories for which this programme is feasable are called renormalisable. In fact,
all such renormalisable field theories are such that all counterterms belong to a finite class of local
quantum operators such that the renormalisation of the theory amounts to a redefinition of the field
normalisations, masses and couplings (the “bare” quantities of the classical Lagrangian density) in
terms of renormalised and finite physical observables directly related to the physical external states,
their masses and couplings. The “bare” quantities are obtained in terms of the renormalised ones
through factors multiplying the latter, these factors being given as power series expansions in the
coupling constants whose coefficient are divergent as the regulator is removed. Theories for which
finite renormalisation is achieved in this manner are called “multiplicatively renormalisable”. These
are the only perturbative quantum field theories of possible relevance to relativistic quantum particle
physics and their fundamental quantum interactions. Under such circumstances, one thus obtains a
predictive framework for the representation and evaluation of these processes.

The above λφ4/4 scalar field theory is the simplest example of such a renormalisable quantum
field theory. All the required counterterms to all orders of perturbation theory simply amount to a
redefinition, through a multiplicative factor, of the field normalisation, its massm2 and its self-coupling
λ, each of these renormalisation factors being given as power series expansions in the coupling λ whose
coefficients include both finite and infinite contributions as the regulator is removed. Nevertheless,
all physical quantities remain finite in that same limit, and may be predicted in terms only of the
renormalised mass and coupling of asymptotic quanta.

Renormalisable relativistic quantum field theories

Among all possible Lagrangian densities for collections of fields of a variety of spin values,
how does one characterise those that define a renormalisable quantum field theory? Through power
counting and dimensional analysis of loop amplitudes, a necessary condition, though not a sufficient
one, for renormalisability may be established. Namely, when working in units such that ~ = 1 = c so
that all dimensionful quantities may be measured in units of mass, whenever the Lagrangian density
contains a specific contribution whose coupling coefficient, say λ, has a mass dimension to some strictly
negative power, λ = α0/Λ

κ with α0 dimensionless, Λ some mass scale and κ > 0, then the associated
interactions are not renormalisable.

For example, let us consider a real scalar field φ whose dynamics derives from the Lagrangian
density

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − V (φ). (79)

Since in units such that ~ = 1 = c the quantum action must be dimensionless, in a four-dimensional
spacetime the scalar field must have a mass dimension of unity, as well as the mass parameter m.
Consequently, any trilinear coupling gφ3 contribution to the potential density V (φ) must have a
coupling strength g of mass dimension unity, while a quartic interaction λφ4 a dimensionless strength
coupling λ. In other words, in four-dimensional spacetime, any quartic potential V (φ) leads to a
renormalisable quantum scalar field theory (in the absence of a quartic coupling, a cubic coupling
is excluded on physical grounds, since otherwise the energy is not bounded below). However, any
coupling of higher order, λφn with n > 4, requires a strength coupling of mass dimension [λ] = 4− n,
and thus represents a nonrenormalisable interaction in a four-dimensional spacetime.

A similar analysis may be developed for any other field theory of higher spin content. Inciden-
tally, in the case of general relativity, the fact that Newton’s constant, which then defines the coupling
strength for gravity, has a strictly negative mass dimension is one of the reasons why the perturbative
quantisation of that classical metric field theory of spacetime geometry is nonrenormalisable.

Historically, the requirement of renormalisability was viewed as defining, albeit for not thor-
oughly convincing physical arguments, a basic restriction on the construction of realistic quantum
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field theories for the fundamental interactions of the elementary particles. Nowadays, this point of
view has considerably shifted, and renormalisable quantum field theories are rather considered to
define effective low energy approximations to some more fundamental underlying description of the
basic physical phenomena, which need not be given even in terms of a quantum field theory. By
integrating out from a given theory its high energy modes above its characteristic energy scale Λ,
one recovers a low energy effective description in terms of a field theory in which the effects of the
underlying theory relevant to the higher energy scales contribute only through nonrenormalisable ef-
fective coupling coefficients of the form λ = α0/Λ

κ. Hence, as the energy scale of the underlying
theory becomes arbitrary large, only renormalisable couplings survive in its low energy effective field
theory approximation, thereby leading to a decoupling of energy scales as one passes from one level
of effective description to the next. From that point of view, the principle of renormalisability for the
construction of physical quantum field theories is nothing but a principle for the decoupling of energy
scales when formulating a theory capable of describing phenomena up to some characteristic energy
scale, without the knowledge and independently of the physics lying beyond that energy scale. The
procedure of renormalisation described above is then also seen to correspond to a renormalisation of
the low energy observables through the resummation of all the known contributions up to some cut-off
energy scale, beyond which there may lie some unknown territory, and then at the same time make
sure that the low energy observables remain independent of this unknown physics, and thus remain
finite as well, as this cut-off scale possibly characteristic of some unknown interactions and particles
is pushed to arbitrary large values. In effect, this indeed corresponds to a decoupling of scales for the
effective low energy approximate quantum field theory description.

Nonetheless, this rationale for the decoupling of scales translated into the requirement of renor-
malisability still leaves us with the general issue of the construction of such theories. The necessary
condition mentioned above in terms of the mass dimension of interaction coupling constants, even
when met, is not sufficient to ensure renormalisability of the corresponding coupling. The answer to
this issue has been given above in the case of scalar fields, but not yet for spinor nor vector fields in
interactions, which are certainly required for a description for the fundamental interactions of quarks
and leptons. It turns out this is far from a trivial matter, and throughout the 1960’s and early 1970’s,
it has been established that the only renormalisable interactions of vector fields, massive or not, with
matter are those governed by the general gauge symmetry principle of Yang-Mills theories based on
some internal symmetry whose algebraic group is a compact Lie group. The stringent and elegant
symmetry constraints brought about by the local gauge symmetry principle on the structure of such
interactions are just powerful enough to guarantee renormalisability.

Hence, in conclusion, the general principles of special relativity, quantum mechanics and decou-
pling of scales for effective field theory descriptions of the fundamental interactions and particles has
led to the general gauge symmetry principle, and its actual realisation in terms of internal symme-
tries, as the guiding principle for the construction of renormalisable interacting relativistic quantum
unitary local field theories as the appropriate framework for the description of the causal interactions
of relativistic quantum point particles and their wavelike spacetime dynamics. Quite an achievement
for the marriage of ~ and c, the genuine third conceptual revolution of XXth century physics following
general relativity and quantum mechanics!

4.2 Global internal symmetries

Hence, it is time now to turn to the meaning of internal symmetries, namely symmetries acting on a
system but which are not associated to transformations in spacetime. In technical terms, a symmetry
is a transformation of a system such that it leaves its equations of motion form invariant. Or in other
words, a symmetry transforms a given solution to the dynamics of a system into another solution to
the same dynamics. Note that a symmetry is not necessarily an invariance property of configurations
of the system, but rather it is an invariance property of the set of its dynamical configurations. In
particular, it may be that even for the lowest energy configuration of a system, this solution may or
may not be invariant under the action of a symmetry of the equations of motion. As we shall see,
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this possibility has profound consequences in the context of field theory, especially when it comes to
symmetries that are realised locally at each point in spacetime, so-called local gauge symmetries.

Given the character of these notes, only the simplest examples of these different issues are
presented here. However, the reader should be aware that many generalisations have been developed,
that are available in the literature as well as standard quantum field theory textbooks.

The simplest example

So far, we have considered only the case of a single real scalar field of mass m. Let us now
extend the discussion to a system composed of two such fields φ1(x) and φ2(x) sharing identical masses
m and interaction couplings. Consequently, such a system possesses a continuous symmetry whose
transformations mix these two fields by an arbitrary amount while preserving their normalisation,
namely a rotation of arbitrary angle in the two dimensional space (φ1, φ2) in which they take their
values. Specifically, combining the two fields into a single complex valued scalar field,

φ(x) =
1√
2

[φ1(x) + iφ2(x)] , (80)

the corresponding total Lagrangian density, which then reads

L = ∂µφ
†∂µφ−m2φ†φ− V (|φ|)

= 1
2 (∂µφ1)

2 − 1
2m

2φ2
1 + 1

2 (∂µφ2)
2 − 1

2m
2φ2

2 − V
(

√

φ2
1 + φ2

2

)

,
(81)

V (|φ|) being an arbitrary renormalisable interaction potential, is clearly invariant under the class of
continuous transformations

φ′(x) = eiα φ(x), (82)

α being an arbitrary constant real parameter representing the rotation angle of this SO(2)=U(1)
symmetry.

This symmetry, which leaves the action and thus also the equations of motion invariant, is a
global symmetry, since it acts in an identical fashion on the field φ(x) irrespective of the spacetime
point labelled by xµ. The symmetry shifts the phase of the complex field by an identical amount
globally throughout the whole of spacetime, namely not only instantaneously through all of space
but also identically throughout the whole time history of the system. Furthermore, the action of
the symmetry is not on the spacetime points at which the field is evaluated, but rather within the
“internal two dimensional space” in which the complex field takes its values. From that point of view,
these values for φ(x) define a two dimensional space associated to each of the spacetime points, the
“internal” space of the system. Consequently, one says that the symmetry is a global internal one.

By virtue of Noether’s theorem, associated to such a continuous symmetry, there exists a current
and its charge which are locally conserved for solutions to the equations of motion. In the present
instance, these conserved Noether current and charge are given by

Jµ = −i
[

φ†∂µφ− ∂µφ†φ
]

, Q =

∫

(∞)
d3~x J0(x0, ~x ), (83)

while for solutions to the dynamics of the system, these quantities obey the conservation conditions,

∂µJ
µ = 0,

dQ

dt
= 0. (84)

These Noether current and charge thus characterise the specific properties of the system that follow
from its U(1) continuous global internal symmetry. In particular, in its Hamiltonian formulation,
the charge Q generates the algebra of the symmetry group, in the present case that of the abelian
group U(1), through the Poisson bracket structure. Acting on phase space through these brackets,

34



the Noether charge also generates, in linearised form, the associated symmetry transformations of the
phase space degrees of freedom. Through the correspondence principle, the same properties should
remain valid at the quantum level in terms of commutation relations. However, because of possible
operator ordering ambiguities for composite quantities such as Noether charges and currents, it may
be that the quantum consistency requirements for the definition of quantum physical observables clash
with the symmetry properties, namely that the symmetry algebra is no longer realised in terms of the
commutation relations of the Noether charges. In such a case, the symmetry is said to be anomalous,
by which is meant in fact that the symmetry is explicitly broken for the quantised system.

In the present case, it may be checked by straightforward construction that the U(1) internal
symmetry is not anomalous. Associated to the creation and annihilation mode expansions of the real
fields φ1 and φ2, the complex field φ(x) acquires of course also such an expansion, but in terms of
creation and annihilation operators which are superpositions of those of the initial fields. Having
initially two independent fields, one still obtains two independent sets of creation and annihilations
operators, given by

a(~k ) = 1√
2

[

a1(~k ) + ia2(~k )
]

, b†(~k ) = 1√
2

[

a†1(
~k ) + ia†2(

~k )
]

,

b(~k ) = 1√
2

[

a1(~k ) − ia2(~k )
]

, a†(~k ) = 1√
2

[

a†1(
~k ) − ia†2(

~k )
]

,

(85)

and obeying the appropriate Fock space algebras

[a(~k ), a†(~ℓ )] = (2π)32ω(~k )δ(3)
(

~k − ~ℓ
)

= [b(~k ), b†(~ℓ )]. (86)

The mode expansion of the complex field in the interacting picture is then

φ̂(I)(x) =

∫

(∞)

d3~k

(2π)32ω(~k )

[

a(~k )e−ik·x + b†(~k )eik·x
]

, (87)

while a direct substitution in the normal ordered expression for the quantum Noether charge Q̂ finds

Q̂ = −
∫

(∞)

d3~k

(2π)32ω(~k )

[

a†(~k )a(~k ) − b†(~k )b(~k )
]

. (88)

In comparison with the mode expansion for a real scalar field, one notices a common structure with,
however, the role played by the creation operator component now taken over by that of the independent
mode b†(~k ) rather than a†(~k ), since the field need no longer be real under complex conjugation.
Furthermore, it is precisely this complex character of the field which makes possible the existence of
the U(1) symmetry, whose Noether charge should thus distinguish the two types of modes present in
the system. Indeed, a direct calculation finds, for instance for the creation operators,

[Q̂, a†(~k )] = −a†(~k ), [Q̂, b†(~k )] = +b†(~k ), (89)

with in particular
Q̂ a†(~k ) |0〉 = −a†(~k ) |0〉, Q̂ b†(~k ) |0〉 = +b†(~k ) |0〉. (90)

In other words, the conserved quantum number Q associated to this Noether quantum charge which
generates the U(1) symmetry of the system, is an additive quantum number for quantum states, and
takes opposite values for the field quanta created by either the operators a†(~k ) or b†(~k ). To put it
still differently, these two types of field quanta are distinguished by an opposite U(1) charge under the
U(1) global internal symmetry. Fields neutral under complex conjugation are associated to neutral
particles under some given continuous symmetry, while fields complex under complex conjugation
lead to charged particles for the associated U(1) global internal symmetry. Hence, these two types
of quanta correspond to particles and their antiparticles, since except for the opposite values for the
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U(1) conserved charge, they otherwise share identical physical properties under the spacetime Lorentz
symmetry, namely their mass and spin values.

Consequently, this is yet one more outcome of the marriage of ~ and c: the existence of particles
and antiparticles of identical mass and spin, but opposite charge under internal continuous symmetries,
such as their electric charge. Even for electrically neutral particles, it could be that the particle and
antiparticle species are still distinct due to some other conserved quantum number than the electric
charge taking opposite values. Of course, a particle which coincides with its antiparticle, and whose
field is thus necessarily real under complex conjugation, is necessarily electrically neutral.

The Noether charge operator Q̂ being the generator of the U(1) global symmetry, finite trans-
formations of parameter α are induced through the exponentiated form

eiαQ̂ (91)

acting on the space of quantum states of the system. In particular, note that the perturbative vacuum
|0〉 carries a vanishing U(1) charge, Q̂|0〉 = 0, hence is also invariant under the action of the symmetry
group,

eiαQ̂ |0〉 = |0〉. (92)

When the ground state or vacuum of the system is left invariant under the action of the symmetry,
one says that the symmetry is realised in its Wigner mode.

It is straightforward to extend the above considerations to any internal compact Lie symmetry
group. Assume that a given system of fields is invariant under a continuous group G whose algebra is
spanned by a set of generators T a such that

[T a, T b] = ifabc T c, (93)

fabc being its structure constants, and for which the collection of fields spans some linear represen-
tation of that algebra. Hence, if φ(x) denotes this collection of fields (with the representation index
suppressed), and T a now stand for the G-generators in that specific representation, the action of the
symmetry on the fields may be represented as

φ′(x) = eiθ
aT a

φ(x), (94)

θa being arbitrary constant but continuous parameters for G-transformations. These quantities being
constant and acting independently of the value of xµ, such transformations define a global internal
symmetry, assuming of course that the Lagrangian density L(φ, ∂µφ) is invariant under these trans-
formations. Consequently, because of Noether’s theorem, there exists conserved currents Ja

µ(x) and
charges Qa =

∫

(∞) d
3~x Ja0 generating the symmetry algebra and its transformations on the space of

classical as well as quantum states of the system. In particular, if the ground state of the system is
invariant under all G-transformations, namely if the symmetry is realised in the Wigner mode, the
quantum space of states gets organised into irreducible representations of G, with in particular the
one-particle states falling into the same G-representations as the original fields φ(x), since the creation
and annihilation operators also carry that same representation index. All the latter properties are
clearly met in the simple U(1) example above, and it should be straightforward to understand why
they should remain valid for an arbitrary nonabelian symmetry group as well.

Spontaneous global symmetry breaking

The above results still leave open the case of a symmetry which is not realised in the Wigner
mode, namely when the vacuum or ground state of the system is not invariant under the action of the
symmetry. It is well known that specific physical systems may possess such a property, as is the case for
instance for spontaneous magnetisation in a ferromagnetic material below the transition temperature.
Let us recall the point made already previously, namely that what is meant by a symmetry is not
the invariance of any of its configurations in particular, but rather the invariance of its equations of
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motion, hence also of the set of its configurations solving these equations viewed as a whole. If a
given solution is not invariant, the existence of the continuous symmetry simply implies that there
exists an infinite degeneracy of distinct solutions of identical energy all related through the action of
the symmetry transformations. For example, imagine a simple linear stick standing along the vertical
direction, onto which a certain pressure is applied along that axis. This system is obviously invariant
for all rotations around the vertical axis. As long as the applied pressure is mild enough, the stick
does not bend, and the lowest energy configuration of the system is indeed invariant under the axial
symmetry. However, as soon as the applied pressure exceeds a specific critical value, the stick does
bend until it reaches some equilibrium configuration. The horizontal direction in which this bending
occurs is arbitrary, but it clearly spontaneously breaks the axial symmetry. Nevertheless, all the
configurations of the system associated to all possible horizontal bending directions are degenerate
in energy, and are related to one another precisely by the action of the axial symmetry group. The
specific solution to the equations of motion singled out by the bending process is no longer invariant,
but the set of all these solutions remains invariant, all the degenerate solutions being related through
the axial symmetry group. When a symmetry is realised in such a manner, namely when the ground
state of the system is not invariant under the symmetry, one says that the symmetry is spontaneously
broken, or that it is realised in the Goldstone mode.

Whether a symmetry is realised in the Wigner or in the Goldstone mode is governed by the
details of the dynamics of the system, whether in a perturbative or a nonperturbative regime. Once
again for the purpose of simplicity, here we only discuss the simplest example, namely that of the
spontaneous symmetry breaking already at the level of the classical theory of a single complex scalar
field φ(x) possessing the U(1) global symmetry

φ′(x) = eiα φ(x), (95)

with the real constant angular parameter α.

Let us consider again the Lagrangian density

L (φ, ∂µφ) = |∂µφ|2 − V (|φ|), (96)

where the potential contribution is given by

V (|φ|) = µ2|φ|2 + λ|φ|4, (97)

with λ > 0. In our previous considerations, the quantity µ2 was taken to be positive, in which case
it defined the mass-squared of the particle quanta associated to the field, describing the quantum
excitations of this field above its ground state, namely the perturbative vacuum |0〉 associated to
the classical value φ = 0 up to the vacuum quantum fluctuations subtracted away through normal
ordering, which is invariant under the U(1) symmetry.

Presently however, we shall consider the situation when µ2 < 0, corresponding to the so-called
mexican hat potential, which very much looks like the bottom of a wine bottle. In such a case, the
configuration φ = 0 no longer defines the lowest energy configuration of the system, since the potential
V (|φ|) now reaches its lowest value for

|φ(x)| =
1√
2
v, v =

√

−µ2

λ
. (98)

Such a configuration also defines the lowest energy state of the field, since all field gradient contri-
butions to the energy then vanish identically, the field being constant throughout spacetime. Such a
configuration however, is no longer invariant under the U(1) symmetry, which is thus realised in the
Goldstone mode. What are then the physical consequences of this spontaneous symmetry breaking in
the vacuum?

In order to properly identify the physical quanta of the field, it is necessary to consider the
field fluctuations about its vacuum configuration. Note that the two independent degrees of freedom
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per spacetime point defined by the complex scalar field may also be represented through a polar
decomposition around a given choice of vacuum configuration,

φ(x) =
1√
2
eiξ(x)/v [ρ(x) + v] , (99)

where ξ(x) and ρ(x) are two real scalar fields with a mass dimension of unity. Note that the vacuum
about which this expansion is performed is

φ0 =
1√
2
v, (100)

but that choice may easily be modified by adding to the mode ξ(x) an arbitrary real constant quantity.
This remark also shows that the U(1) symmetry now leaves the radial field ρ(x) invariant, while it
simply shifts the field ξ(x) by the product αv. All the minimal energy configurations correspond
the constant field φ lying at the bottom of the potential, with the norm |φ| = v/

√
2 but an arbitrary

phase. The U(1) symmetry simply induces a transformation of any such vacuum into any another such
vacuum, the difference in their phases being set by the value of the U(1) angle α (note the perfect
analogy with the above example of a bent stick). Hence, one should expect that the fluctations
associated to the field ξ(x) are massless, since they may be excited at zero-momentum at no extra
energy cost. On the other hand, the radial fluctuation ρ(x), moving the field out from its lowest energy
configuration, must correspond to massive quanta of the field. Furthermore, this physical conclusion
does not depend on the choice of complex phase for the reference constant vacuum configuration φ0,
since this amounts to a simple constant shift in the massless field ξ(x).

More explicitly, a direct substitution of the mode expansion (99) gives

L =
1

2
∂µρ∂

µρ+
1

2

(

1 +
1

v
ρ

)2

∂µξ∂
µξ − 1

2
µ2(ρ+ v)2 − 1

4
λ(ρ+ v)4. (101)

Isolating then the terms quadratic in ξ(x) and ρ(x) indeed confirms that the mode ξ(x) is massless,
while the ρ(x) field is massive, with the values

m2
ρ = −2µ2 > 0, m2

ξ = 0. (102)

Hence, we reach the conclusion that since the vacuum is not invariant under the action of transforma-
tions which nevertheless define a symmetry of the system and its equations of motion, necessarily in
the Goldstone mode realisation of the symmetry there exist massless modes, namely massless quanta
for a quantised field, which in the zero momentum limit correspond to the excitation of one vacuum
state into another one, all these vacuum states being degenerate in energy and infinite in number.
Hence, rather than being explicitly realised in the space of states as is the case for the Wigner mode,
the symmetry is now hidden through the existence of Golstone bosons. Nonetheless, the symmetry is
still active within the system, even though it is no longer realised in a linear fashion. Indeed, within
the field basis which diagonalises its fluctuations, the symmetry acts as

ρ′(x) = ρ(x), ξ′(x) = ξ(x) + α v, (103)

which, among other consequences, implies that the Goldstone modes may only possess derivative
or gradient couplings with other fields. The symmetry thus restricts to some extent the form of
interactions of Goldstone fields.

In fact, it should be quite clear that this is a conclusion valid in full generality, which is known
as Goldstone’s theorem. Whenever a continuous global symmetry is spontaneously broken in the
vacuum, associated to each of its broken generators, there exist massless quanta carrying the cor-
responding quantum numbers, known as the Goldstone bosons of the symmetry. This conclusion is
valid whether the spontaneous symmetry breaking mechanism is perturbative or nonperturbative, and
whether the symmetry is abelian or nonabelian. The only specific requirement is that the symmetry
be a continuous one (in the case of a fermionic or spacetime symmetry, the Goldstone mode need not
be bosonic, as is the case for instance for spontaneous supersymmetry breaking leading to a spin 1/2
goldstino massless mode).
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4.3 Local or gauged internal symmetries

So far, we have briefly discussed the meaning of a global internal symmetry, and described some of
its physical consequences, whether in the Wigner or the Goldstone mode. However, the existence
of a global symmetry is not very appealing, at least from some theoretical aesthetic point of view.
Indeed, any global internal symmetry defines transformations on the set of fields which act in an
identical manner irrespective of the spacetime point at which the field values are being considered.
For instance in the case of the U(1) symmetry associated to the electric charge and the electromagnetic
interactions, this would mean that in order to render the transformation unobservable, one is required
to change the phases of all the electrons of the Universe by exactly the same amount instantaneously
throughout all of infinite space and troughout the whole of spacetime history! Although there is
no technical or mathematical inconsistency that arises with such a relativistic quantum field theory,
certainly it is a property of such symmetry transformations which runs counter to our belief that
causality ought to be a stringent requirement on the construction of any physical theory.

Hence, one should rather prefer to develop a formalism in which internal symmetries are still
possible, but such that now transformations may be realised locally in spacetime, though in a con-
tinuous fashion as to their spacetime dependence, while they would remain nevertheless unobservable
to any conceivable experiment. Namely, is it possible to locally change the quantum phase of some
electron while not at the same time by the same amount that of all the other electrons of the Universe,
and nevertheless keep such a change hidden from any experimentalist? Clearly, this would require
some information to be sent to all the other electrons in the Universe to tell them how to adjust their
quantum phases accordingly, and this at the speed of light so that no experimentalist may catch up
with this signal and measure the phase of some electron before it would have had the opportunity to
adjust itself to the action of the symmetry transformation. In other words, by making the symmetry
local, or by gauging the symmetry, one must introduce some additional propagating field coupling
with equal strength to all other matter carrying the same symmetry charge, and whose quanta are
necessarily massless.

This is the heuristic idea of the local gauge symmetry principle. As we shall explicitly see
through the simplest examples, such a principle in fact provides a unifying principle for the existence
of fundamental interactions, whose quantum carriers are massless and couple with identical strength to
all other quanta with which they interact. These gauge bosons are necessarily vector fields for internal
symmetries, and as stated previously, such Yang-Mills gauge theories based on compact Lie groups
are the only possible renormalisable field theories including spin 0 and 1/2 matter fields interacting
with vector fields.

The simplest example

As the simplest illustration of the above description, let us consider once again the theory
of a single complex scalar field φ whose Lagrangian density is U(1) invariant under global phase
transformations of the field, see (81) and (82). Clearly, if one wishes to gauge this symmetry, namely
to construct a system which remains invariant under the local phase transformations

φ′(x) = eiα(x) φ(x), (104)

α(x) now being an arbitrary spacetime dependent parameter rather than a constant angle as in the
case of a global symmetry, a problem arises with the original Lagrangian. Indeed, this Lagrangian is
no longer invariant, since the gradient contribution does not transform in the same covariant manner
as the original field does,

∂µφ
′(x) = eiα(x) [∂µφ(x) + i∂µα(x)φ(x)] . (105)

However, this expression suggests a modification of the ordinary derivative or gradient of the field of
the form

∂µ −→ Dµ(x) = ∂µ + igAµ(x), (106)
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where g is some dimensionless real quantity, which turns out to represent the coupling strength of the
U(1) gauge interaction, and Aµ(x) the vector field for the gauge boson associated to the gauging of
the U(1) symmetry. Indeed, it now suffices to assume that this vector field transforms under the local
U(1) symmetry according to

A′
µ(x) = Aµ(x) − 1

g
∂µ α(x) , (107)

to check that the modified gradient does possess the same covariant transformation as the field does
under the symmetry,

D′
µ(x)φ′(x) =

[

∂µ + igA′
µ(x)

]

eiα(x)φ(x) = eiα(x)Dµ(x)φ(x), (108)

hence the name “covariant derivative” for the differential operator Dµ(x). Clearly, a simple substi-
tution of the ordinary derivative by the covariant one in the original Lagrangian density invariant
under the global U(1) symmetry leads to an expression invariant now under any local U(1) symmetry
transformation. The U(1) symmetry has been gauged.

However, we still need to provide the vector field Aµ(x) with some dynamics, which is done by
adding the pure gauge Lagrangian density to that of the matter field,

LA = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ, (109)

Fµν being the gauge field strength, indeed the sole gauge invariant quantity that may be constructed
out of the gauge field Aµ and its first-order gradients, in order to obtain a Lagrangian density which is
of second-order in spacetime gradients, and thus represents a causal propagation of the gauge field (for
the same reason, the absolute sign and normalisation of this Lagrangian density are fixed as given).
This field being real under complex conjugation, its mode expansion is of the form, in the interacting
picture,

Aµ(x) =

∫

(∞)

d3~k

(2π)32|~k |
∑

λ=±

[

e−ik·xǫµ(~k, λ)a(~k, λ) + eik·xǫ∗µ(~k, λ)a†(~k, λ)
]

, (110)

a(~k, λ) and a†(~k, λ) being annihilation and creation operators with the Fock space algebra normalised
in the usual manner for massless quanta, and λ denotes the different polarisation states possible
associated to the polarisation vectors ǫµ(~k, λ). These polarisation tensors are subjected to some
restrictions which stem from the gauge invariance properties of the field, and shall not be discussed
here (even though the issue of the quantisation of gauge invariant systems is discussed hereafter, but
not explicitly for such abelian and nonabelian Yang-Mills theories). Note that the mass dimension of
the gauge field indeed needs to be unity, hence leading to a dimensionless gauge coupling constant g.

In conclusion, the gauging of the simplest U(1) invariant scalar field theory is defined by the
total Lagrangian density

Ltotal = LA + Lφ, (111)

with the pure gauge Lagrangian LA given above, and the matter one by

Lφ = L (φ,Dµφ) = |(∂µ + igAµ)φ|2 −m2|φ|2 − V (|φ|)

= |∂µφ|2 −m2|φ|2 − V (|φ|) − igAµ

[

φ†∂µφ− ∂µφ†φ
]

+ g2AµA
µ.

(112)

In the case that the U(1) symmetry is that associated to the electromagnetic interaction, this system
is simply that of scalar electrodynamics, namely that describing the interactions of a massive charged
spin 0 particle with the photon.

From the latter expression, we immediately read off the different interaction terms coupling the
matter and gauge fields. The term linear in Aµ is in fact gAµJ

µ, namely the coupling of gauge field to
the U(1) Noether current, and represents the coupling of one gauge quantum to two scalar field quanta
of opposite U(1) charges. Such a feature is generic for all Yang-Mills theories: gauge fields always
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couple linearly to the associated Noether currents. The term quadratic in Aµ describes the coupling of
two gauge quanta to two scalar quanta, also of opposite U(1) charges, in order for the total U(1) charge
to be conserved in the interactions. Note that the single gauge boson interaction is proportional to ig,
while the quadratic interaction is proportional to ig2. In other words, the gauge symmetry principle
not only explains, on the basis of a given internal symmetry, the appearance of local interactions, but
it also sets specific restrictions on the properties of these interactions by predicting particular relations
between the coupling strengths of different interactions, such restrictions being a consequence of the
symmetry.

Among the interactions, the gauge boson Aµ(x) does not couple to itself, but only to the charged
matter field with the universal coupling strength g. The reason for the fact that the gauge boson lacks
such a self-coupling is that it is neutral under the U(1) symmetry, and does not carry any U(1) charge.
Indeed, under a global symmetry transformation α(x) = α, we simply have for the transformed field
A′

µ = Aµ. Furthermore, it is also the U(1) symmetry, but this time in its gauged embodiement,
which explains why the gauge boson quanta are massless particles. Indeed, any mass term of the
form M2

AAµA
µ is clearly not gauge invariant under the local gauge transformations of the vector

field. Hence, it is the local gauge symmetry which protects the gauge boson from acquiring any mass.
In particular, this implies that physical (gauge invariant) quanta of that field may possess only two
transverse polarisation states, such that kµǫµ(~k, λ) = 0, λ = ±, a fact related to the issue of the
quantisation of such Yang-Mills fields.

All the above considerations are readily extended to other matter fields, including fermionic ones
not addressed in these notes. Furthermore, even though our discussion concentrates on the abelian
U(1) case, the same developments apply to a nonabelian internal symmetry group G, leading then to
Yang-Mills gauges theories. In such a case, for a collection of fields transforming in a G-representation
whose generators are T a, the covariant derivative, which now is Lie-algebra valued, reads

Dµ = ∂µ + igAa
µT

a, (113)

g being the real gauge coupling constant, and Aa
µ the real gauge vector fields, which, for infinitesimal

local gauge transformations of parameters θa(x), transform according to

A′a
µ = Aa

µ − 1

g
∂µθ

a − fabcθbAc
µ, (114)

fabc being the structure constants of the Lie algebra of G (it is also straightforward to establish the
transformations of the gauge bosons for finite gauge transformations). The total Lagrangian of such a
system is again given by the sum of the original G-invariant Lagrangian of the matter fields in which
the ordinary derivative is substituted by the covariant derivative Dµ, to which one simply adds the
pure Yang-Mills Lagrangian density

LA = −1

4
F a

µνF
aµν , F a

µν = ∂µA
a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (115)

Once again, any mass term for the gauge bosons Aa
µ is forbidden by local gauge invariance, while

gauged matter interactions are directly read off from the matter Lagrangian, leading again to linear
and quadratic interactions of scalar fields with the gauge bosons. However, for a nonabelian symmetry,
given the nonvanishing structure constants fabc, the gauge bosons themselves possess now G-charges,
actually those of the adjoint representation as may be seen from their gauge transformations for
constant parameters θa(x) = θa. Consequently, from the expansion of the pure Yang-Mills Lagrangien,
one identifies cubic and quartic terms representing gauge boson trilinear and quadrilinear couplings,
whose strengths are directly proportional to g and g2, respectively. Hence once again, the symmetry
governs the details of all the gauge interactions, namely their strengths and their symmetry properties
as well. Such predictions are specific to Yang-Mills theories, and provide important signatures for
high energy experiments as to the relevance of the gauge symmetry principle for the physics of the
fundamental interactions and the elementary particles. Note also that it is precisely these nonlinear
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gauge boson self-couplings which must be, in ways still to be thoroughly understood, at the origin of
the specific nonperturbative phenomena of nonabelian theories, such as the property of confinement
for the theory of the strong interactions among quarks, namely quantum chromodynamics (QCD)
based on the local gauge symmetry SU(3)C for colour degree of freedom of quarks.

Spontaneous gauge symmetry breaking

The above discussion of the construction of abelian and nonabelian internal gauge symmetries
implicitly assumed the symmetry to be realised in the Wigner mode. Hence, it is also important to
consider the situation when the symmetry is rather realised in the Goldstone mode. For the purpose
of illustration in the simplest case, let consider once again the U(1) gauged single scalar field theory,
but this time with a potential leading to spontaneous symmetry breaking. The associated Lagrangian
density is thus

L = −1

4
FµνF

µν + |(∂µ + igAµ)φ|2 − V (|φ|), (116)

with
V (|φ|) = µ2|φ|2 + λ|φ|4, µ2 < 0 , λ > 0. (117)

This time however, because of the U(1) local symmetry transformation properties of the fields,

φ′(x) = eiα(x) φ(x), A′
µ(x) = Aµ(x) − 1

g
∂µα(x), (118)

when expanding any scalar field configuration about one of its vacuum configurations,

φ(x) =
1√
2
eiξ(x)/v [ρ(x) + v] , φ0(x) =

1√
2
v, v =

√

−µ2

λ
, (119)

it is always possible to effect a local U(1) gauge transformation, with parameter

α(x) = −1

v
ξ(x), (120)

(note that since in general ξ(x) is spacetime dependent, such a procedure is possible only when the
internal symmetry is gauged), such that the Goldstone mode is completely gauged away from the
scalar field, but lies hidden now in the transformed gauge field A′

µ,

φ′(x) =
1√
2

[ρ(x) + v] , A′
µ(x) = Aµ(x) +

1

gv
∂µξ(x). (121)

Upon substitution of the transformed fields in the Lagrangian density, which is physically equivalent
to the original expression for the Lagrangian on account of local gauge invariance, one then finds

L = −1

4
F ′

µνF
′µν

+
1

2

[

∂µρ+ igA′
µ(ρ+ v)

]2 − 1

2
µ2(ρ+ v)2 − 1

4
λ(ρ+ v)4. (122)

Isolating now all quadratic terms in the fields, one immediately notices that the radial field ρ still
possesses the mass m2

ρ = −2µ2 > 0, but that in place of a massless Goldstone mode ξ(x) which no
longer appears in this Lagrangian by having been gauged away, there now appears an explicit mass
term for the gauge boson field, with value

m2
A = g2v2. (123)

Hence, even though a local symmetry when realised in the Wigner mode forbids any mass for its gauge
bosons, when spontaneously broken in the vacuum and realised in the Goldstone mode, gauge bosons
do acquire a mass! Nevertheless, their mass is then not just any parameter in the Lagrangian, but is
in fact governed by the symmetry properties and takes a very specific value proportional both to the
gauge coupling constant g and the scalar field vacuum expectation value v which spontaneously breaks
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those symmetry generators whose gauge bosons are massive. The counting of degrees of freedom is
also in order. In the Wigner phase, one has two real scalar modes (one massless and one massive, the
Goldstone and the radial ones, ξ and ρ) and two massless gauge modes (the two transverse modes of
the gauge field). In the Goldstone phase, one has one real massive scalar mode (the radial field ρ)
and three massive gauge boson polarisation modes. Note that the longitudinal massive gauge boson
component is nothing but the would-be Goldstone mode ξ which has been gauged away and turned
into the longitudinal component of the gauge field A′

µ, see (121).

These general features of the spontaneous symmetry breaking of a local gauge symmetry remain
valid in general, and characterise the so-called Higgs mechanism. Whenever a local internal symmetry
is spontaneously broken in the vacuum, those gauge bosons associated to the generators which do not
leave invariant the vacuum acquire a mass proportional to the product of the gauge coupling and the
scalar vacuum expectation value. Moreover, the Goldstone modes in the case of a global symmetry
then provide the longitudinal polarisation states of the massive gauge bosons, leaving over the massive
scalar modes, referred to as higgs scalars, as the only remnants of the spontaneously broken scalar
matter sector. The gauge transformation which gauges away the Goldstone modes from the scalar
sector to hide them in the gauge fields is known as the unitary gauge. It is in the unitary gauge that
the physical content of such a theory is most readily identified. In the simplest example above, we thus
conclude that the physical field content is that of a neutral massive spin 0 particle of mass

√

−2µ2,
the higgs particle, interacting with itself and with a neutral massive spin 1 particle of mass |gv|.

Remarks

As already mentioned, it turns out that the gauge symmetry principle uniquely singles out
among all possible quantum field theories of interacting spin 0, 1/2 and 1 particles, all those that are
renormalisable, whether the gauge bosons are massive or not, provided however that in the former case
their mass arises through the Higgs mechanism. This is quite a remarkable result, since such a local
internal symmetry principle also implies the existence of specific interactions between matter particles
and gauge bosons, whose detailed properties are totally governed by the underlying symmetry, whether
abelian or nonabelian. In other words, all the relativistic and quantum dynamics of fundamental
interactions among elementary point particles, through the marriage of ~ and c, appears to follow
simply from the very elegant and powerful idea of a fundamental symmetry based on a compact Lie
group.

Thus in order to describe all the known strong, electromagnetic and weak interactions observed
to act between all known quarks and leptons, a gauge group as simple as SU(3)c×SU(2)L×U(1)Y
suffices, with a specific choice of representations for the quark and leptons fermionic fields, as well as
for the scalar sector required for the Higgs mechanism leading to massive electroweak gauge bosons
but nonetheless a massless photon. If not yet totally unified within this Standard Model of these
interactions, at least all these interactions are brought within the unified framework of relativistic
quantum Yang-Mills theories, leading to predictions whose precision is without precedent and which
are confirmed through remarkable particle physics experiments. Nevertheless, this raises the issue
of the rationale behind such a principle, as well as for the choice of internal symmetry and matter
content.

From another perspective, with such Yang-Mills theories we are encountering dynamical theories
whose quantisation requires an approach more general than that which was briefly reviewed in Sect.2.
Indeed, considering the issue for example from within the Hamiltonian approach, when identifying
the momentum conjugate to the U(1) gauge field Aµ coupled to the single scalar field through the
Lagrangian density discussed above, one finds

πµ =
∂Ltotal

∂(∂0Aµ)
= −F 0µ, (124)

thus leading to the following constraint for its time component

π0 = 0. (125)
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In other words, all phase space degrees of freedom of the system are not independent. Some are in fact
constrained, and as we shall see in the forthcoming section, this is a generic feature for any system
possessing a local symmetry whose parameters are not constant. How is one then to quantise such
systems, since their physical dynamics is not contained within all of phase space, but only within
some subspace of it? Clearly, gauge invariance implies that all degrees of freedom are not physical
and relevant to the dynamics. How does one then account consistenly for such redundant features of
a gauge invariant system in its quantisation? In the above example, it would be possible to solve for
these gauge degrees of freedom, but at the cost of loosing a manifestly spacetime covariant description
of such systems, which is also not welcome in itself. Hence, it is time now to turn to the discussion of
the quantisation of constrained dynamics.

5 Dirac’s Quantisation of Constrained Dynamics

5.1 Classical Hamiltonian formulation of singular systems

The system of constraints

First- and second-class quantities and constraints

Second-class constraints and Dirac brackets

First-class constraints and gauge invariance

5.2 The relativistic scalar particle

The action principle

The Hamiltonian formulation

5.3 Gauge fixing, reduced phase space and Gribov problems

Faddeev’s reduced phase space

Admissible gauge fixing and Gribov problems
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5.4 Dirac’s quantisation

5.5 Klauder’s physical projector:

gauge invariant quantum dynamics without gauge fixing

6 Chern-Simons Quantum Field Theory

7 The Closed Bosonic String

7.1 The nonlinear Nambu-Goto action

7.2 Conformal gauge fixing

7.3 Dirac’s conformal quantisation

Fundamental operator algebra

Physical states

Poincaré and conformal algebras

The no-ghost theorem

7.4 Light-cone quantisation

8 Toroidal Compactification of the Closed Bosonic String

8.1 Toroidal compactification in field theory

8.2 Toroidal compactification in string theory

9 Conclusions

The principle aim of these notes has been to provide a brief outline, restricted to bosonic degrees of
freedom only, of the relativistic and quantum concepts that are at the basis of our present understand-
ing of all fundamental quantum interactions and elementary particles. The general considerations that
have led during the XXth century to the identification of relativistic quantum Yang-Mills gauge field
theories as the appropriate framework for a consistent causal and quantum unitary description of
relativistic quantum point particles and their interactions have been recalled. The same convergence
of ideas centered onto the fundamental concept of the local gauge symmetry principle applies to the
gravitational interaction, which, when described within general relativity and its extensions all based
on the dynamics of the geometry of spacetime, has been successful so far only at the classical level,
while a full-fledged theory for quantum gravity is still eluding us. It appears that the physicist of the
XXIst century has arrived at the cross-roads of the three fundamental paths that have guided him
during the previous one, and which may be characterised in terms of the three fundamental constants
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c, ~ and GN . It seems that in spite of the amazing successes of the marriage of c with ~, it is close
to impossible to force these sets of ideas to happily live within a ménage à trois. Some new paradigm
of geometrical and topological concepts is most probably called for within the realm of the quantum
gravitational interaction coupled to all other quantum interactions and particles.

As another but complementary aim of these notes, the general issues surrounding the quantisa-
tion of constrained systems, which include all possible gauge invariant theories based on a field theory
formulation, have been described, providing the basic tools necessary for such a study in general. In
particular, having shown that the potential difficulties which follow from gauge fixing procedures for
such theories are often unavoidable, an alternative and recent approach based on a physical projector
onto the gauge invariant quantum configurations of such systems and free of the necessity of gauge fix-
ing, has been advocated as a powerful new tool with which to address these difficult issues, especially
with regards to nonperturbative aspects of strongly interacting Yang-Mills theories.

Yang-Mills, and more generally local gauge invariant theories have also shown that topological
features, either of spacetime or of the field configuration space, do play a fundamental role in the
proper understanding of such interactions. With the discovery of topological quantum field theories,
void of any genuine dynamics but not of any quantum physics nonetheless, it is conceivable that
pure quantum gravity could be the physics of quantum topology rather than of spacetime geometry,
and that it is by coupling quantum topology to matter and interactions that the quantum geometric
properties of spacetime should arise, local relativistic quantum field theories with gauge invariances
being their appropriate low energy effective description.

As one illustration among possibly many others that have not been discussed at the Work-
shop, some of these issues have briefly been touched on within the context of bosonic string theory.
Specific fascinating new features having to do with the gravitational sector of such systems and its
interplay with the geometry and topology of spacetime have been described in the simplest terms
available. Many more such issues have arising within that context, such as for example the possible
noncommutative character of spacetime itself within string theory.

It is equipped with this understanding of the world of the fundamental quantum interactions
and particles, and the role played by topology within the relativistic gauge invariant quantum field
theoretic framework describing this world today, that the physicist of the XXIst century in quest of the
ultimate unification is to set out into the unchartered territory towards a truly genuine formulation and
understanding of what quantum geometry will turn out to be, the final unification of the relativistic
quantum and the relativistic continuum, the completed symphony of the three constants c, ~ and GN

which have guided us already through the three fundamental conceptual revolutions of XXth century
physics.
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