
LSM = LYM + LD + LYukawa + LHiggs

In this course we shall not consider possible gauge-fixing
and ghost field contributions (which may result from other
choices of gauge)
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The Gauge Sector

The first part of the SM Lagrangian is the kinetic part of
the gauge fields:

LYM = − 1
4g2

1

BµνBµν − 1
4g2

2

W a
µνW a µν − 1

4g2
3

GA
µνGA µν

where g1, g2, g3 are the couplings respectively of the
hypercharge, of isotopic spin (isospin), and colour.
The tensors in the above equation are

Bµν = ∂µBν − ∂νBµ

for hypercharge, with Bµ being the boson vector field of the
hypercharge U(1).



For the isospin:

W a
µν = ∂µW a

ν − ∂νW a
µ − εabcW b

µW c
ν

with W a
µ (a = 1, 2, 3) being the vector bosons of the SU(2)

weak isospin and εabc the antisymmetric structure constant
of SU(2). For the SU(3) colour group

GA
µν = ∂µAA

ν − ∂νAA
µ − fABCAB

µ AC
ν

where the AA
µ (A = 1, . . . 8) are the gluon fields, and fABC

the antisymmetric structure constants of SU(3).

Note that hypercharge and isospin for the SU(2)⊗ U(1) gauge theory will be
broken by the Higgs mechanism to the give the unbroken U(1) EM theory
(QED), and the broken generators give the three massive vector bosons of the
weak interactions.

But more on that later.



The Dirac Sector
The term LD is the Lagrangian for the Dirac fermions,
describing the freely moving fermions and the fermionic
interactions with gauge bosons.

Recall that weak interactions violate parity, as such, we’ll
describe the Dirac fermions in terms of Weyl spinors with
two-components

Ψ =
(

ψL

ψR

)

to highlight that fact. To intuitively understand this
notation is in terms of the algebra of Lorentz
transformations, in four-dimensions the Lorentz group is
generated by two SU(2) factors, "J + i "K and "J − i "K, where
"J is the angular momentum and "K the vector for boosts.



It is easy to see that both these SU(2)’s are related by a
conjugation C or a parity transformation P ( !J → !J and
!K → − !K). They are therefore invariant under a CP
transformation. We can exploit the conjugation C to write
two types of fermions with two components in terms of one
type:

ψ̄L ≡ σ2ψ
∗
R ψ̄R ≡ σ2ψ

∗
L

(σ2 is the Pauli matrix). We also have

C : ψL → σ2ψ
∗
R ψR → σ2ψ

∗
L

P : ψL → ψR ψR → ψL



where quarks and leptons of the SM are written in terms
of multiplets (SU(3)c, SU(2)w, U(1)y) and using only two
component spinors of the type L:

Li =
(

νi

ei

)

L

∼ (1, 2, y1)

ēiL ∼ (1, 1, y2)

Qi =
(

ui

di

)

L

∼ (3, 2, y3)

ūiL ∼ (3̄, 1, y4)
d̄iL ∼ (3̄, 1, y5)

where i is the index which indicates the family.

For now the values y1 . . . y5 of the hypercharge shall remain
undetermined.



The coupling of fermions to gauge fields is done with
covariant derivatives. For gauge fields we will use a notation
in terms of matrices

W̃µ =
1
2
W a

µ τa Ãµ =
1
2
AA

µ λA

with τa being SU(2)w (Pauli) matrices and λA those of
SU(3)c (Gell-Mann matrices). In the following we will
indicate the Pauli matrices with τ i when done in reference
to SU(2)w matrices and with σi for spin.



The covariant derivatives are defined by

DµLi =
(
∂µ + iW̃µ + i

y1

2
Bµ

)
Li

Dµēi =
(

∂µ +
i

2
y2Bµ

)
ēi

DµQi =
(

∂µ + iÃµ + iW̃µ +
i

2
y3Bµ

)
Qi

Dµūi =
(

∂µ − iÃ∗
µ +

i

2
y4Bµ

)
ūi

Dµd̄i =
(

∂µ − iÃ∗
µ +

i

2
y5Bµ

)
d̄i .

The Dirac part of the SM Lagrangian is

LD =
3∑

i=1

(
L†

iσ
µDµLi + ē†iσ

µDµēi + Q†
iσ

µDµQi

+ ū†
iσ

µDµūi + d̄†iσ
µDµd̄i

)
.



Note that the Lagrangian LYM +LD has a symmetry larger
than the full Lagrangian of the SM. For the multiplets used
above

Mi →M ′
i = UijMj

leaves LYM + LD invariant. Given that we have 5 types of
fermions the overall symmetry appears to be

[U(3)]5 .

In reality this symmetry will not be respected in the other
parts of the Lagrangian.

In particular, when we try writing mass terms for the fermion
fields (through interactions with a scalar field).



Hypercharge and anomalies

In order to determine the hypercharges we will require a
choice that is consistent with the constraints of symmetry
and the renormalisability of the theory.

The symmetry relations between the Green’s functions are
called Ward identities.

The renormalisability of a theory depends critically on the
differences between different sectors of the theory, then the
Ward identities. Quantum corrections do not necessarily
respect the symmetries and in this case we speak of
anomalies for the Ward identities.



At the quantum level we must ensure the absence of
anomalies for Ward identities because they prevent the
retention of a gauge current (the renormalisability of the
theory would be destroyed).

To verify the absence of anomalies we must calculate loop
diagrams. To do this we will limit ourselves to a
consideration of triangle graphs, since higher order
contributions or those with more external lines are zero if
the triangle diagram is zero.

Where it is possible to see in general that the
symmetric structure constants of the group involved, in the
terms of abnormalities arising when calculating the triangle
diagrams, can limit the number of diagrams to be
considered.



The SU(3) colour group has symmetric structure constants
but no abnormalities because the number of quarks and
anti-quarks is the same and this guarantees that each
contribution from a fermion in the loop is negated by the
contribution from a corresponding anti-fermion.

The SU(2) group has only anti-symmetric structure
constants, and so has no contributions to the anomaly.

The group U(1) of hypercharges can give rise to anomalies.
We will therefore consider the diagrams when we have at
least one boson, Y , of U(1)y.

Note that the diagrams which contain a single line with a
boson of SU(3)c or SU(2)w are invalid because the traces
on a single matrix of these groups is zero.



We therefore have the following constraints on the
hypercharge to eliminate the triangle diagrams:

2 y3 + y4 + y5 = 0

2 y1 + 2 · 3 y3 = 0

2 y3
1 + y3

2 + 3 (2 y3
3 + y3

4 + y3
5) = 0

Y

Y

Y

Y

Y

SU(3)

SU(3)

SU(2)

SU(2)



Yukawa interactions
The need to introduce Yukawa terms (terms of dimension
4 with two spinors and a scalar field) is due to the
impossibility of writing mass terms which are invariant and
renormalisable, such as:

LT σ2ēL , QT σ2ūL , QT σ2d̄L ,

which are not invariant with respect to the weak isospin.
One possible way to construct mass terms which are
invariant is to introduce a scalar field that is an isospin
doublet, like the Higgs field:

H =
(

H1

H2

)
∼ (1, 2, yh) ,



and construct interaction terms (scalar-fermion-fermion),
the Yukawa terms:

LYukawa = iY e
ijL

T
i σ2ējLH∗ + iY u

ijQ
T
i σ2ūjLτ2H

+iY d
ijQ

T
i σ2d̄jLH∗ + h.c.

where the Yij are complex 3× 3 matrices of Yukawa
couplings.

Recall that τi denotes the Pauli matrices for the SU(2)w

group and σi the same Pauli matrices for spin.

Note that after spontaneous symmetry breaking these terms
give rise to fermionic mass terms.



The hypercharge conservation imposes the following
relations:

yh = y1 + y2 = −(y3 + y4) = y3 + y5

and if we fix yh = 1, a choice consistent with the equations
from the last section are:

y1 = −1 , y2 = +2 , y3 = +1/3 , y4 = −4/3 ,

y5 = 2/3 .

The Yukawa couplings Yij are not all independent because
redefinitions of the fields are possible using the global
symmetries of LYM + LD.



Note that any complex matrix can be written as:

Y e = Ue T MeV e

with UeUe† = V eV e† = 1 (Ue and V e being unitary
matrices) and Me a real diagonal matrix. The unitary
matrices can be absorbed by a redefinition of fields:

L′ = UeL ē′L = V eēL

without changing the LYM + LD. For leptons this
redefinition makes LYukawa diagonal:

iye
iiL

T
i σ2ēiH

∗ + h.c.
with

Me =




ye
11 0 0
0 ye

22 0
0 0 ye

33



 .



These Yukawa terms break the global U(3)× U(3)
symmetry and only retain the U(1) invariance with phase

Li → eiαiLi , ēi → e−iαi ēi ,

the αi being interpreted as the three leptonic numbers.

The redefinition of quark fields of type up and down can not
be done independently, because the two types of Yukawa
interactions for quarks always contain Qi.

Note that if we wanted to have massive neutrinos, we would
have the same problem with Li, which would lead to the
VPMNS in the same way that this section will lead to VCKM .



Writing for leptons:

Y u = Uu T MuV u , Y d = Ud T MdV d ,

and for quarks

ū→ V uū , d̄→ V dd̄ ,

the doublet Qi can be redefined to eliminate the matrix
U and the remaining two Yukawa interaction terms leave
matrices in the other couplings:

iyd
iiQ

T
i σ2d̄iH

∗ + iyu
jjQ

T
i σ2Vjiūjτ2H

with V = UuUd†. The matrix V is unitary and therefore
there are now 9 independent parameters instead of 18, by
the relationship V†V = 1.

Note that Vji will give rise to VCKM , but more of that after
we break the EW symmetry.



A further simplification is possible using the Euler
decomposition

V = PTUP ′

where P and P ′ are the diagonal phase matrices and the U
matrix contains the remaining parameters.

With a redefinition of phase the three ui and three di can
be expected to completely eliminate the 6 parameters in the
matrices P , P ′, but in reality we can not determine more
than 5 (normally n × n matrices can be used to eliminate
n2 − 1 phases). But a common phase factor can always be
added



ū′L = eiα




eiα1 0 0
0 eiα2 0
0 0 e−i(α1+α2)



 ūL ,

d̄′L = eiβ




eiβ1 0 0
0 eiβ2 0
0 0 e−i(β1+β2)



 d̄L .

The matrix V becomes

V ′ = e−iα




e−iα1 0 0

0 e−iα2 0
0 0 ei(α1+α2)



 V




eiβ1 0 0
0 eiβ2 0
0 0 e−i(β1+β2)



 eiβ

thus redefining the phases of the quark fields can eliminate
the 4 phases in both matrices; the above equation and the
combination α− β.

Note that the phase α + β does not exist.



Therefore, we are left with a matrix containing three pa-
rameters (angles) of the matrix U , and a phase, all of which
are physical!

The only remaining symmetry in the quark sector of the
global symmetry is a U(1) phase common to all quarks

Qi → eiδQi ūi → e−iδūi d̄i → e−iδd̄i

which corresponds to a conserved quantum number, baryon
number.



The Higgs sector

Before we proceed to EWSB, we need to study the final
piece of LSM . This will also be the sector responsible for
the symmetry breaking SU(2)w ⊗ U(1)y → U(1)em.

In the previous section we introduced a complex scalar
doublet of SU(2)w

H =
(

H1

H2

)
∼ (1, 2, 1) ,

where we now write its Lagrangian as

LHiggs = (DµH)† (DµH)− V (H)



with

DµH =
(

∂µ + iW̃µ +
i

2
yhBµ

)
H with yh = 1

V (H) = −µ2H†H + λ(H†H)2 .

The potential V is the broadest possible renormalisable and
invariant potential under the SU(2)w ⊗ U(1)y symmetry.

The invariance of the vacuum is that of the U(1)em, so one
component of this pair must be a neutral scalar field of the
electric charge.

One can check that our choice of the previous section,
yh = 1, is in agreement with this observation.



The relationship between the electric charge, hypercharge
and isospin is

Qem = I3w +
1
2
y .

For both components of the doublet Higgs has

Qem(φ+) =
1
2

+
1
2
yh = 1

Qem(φ0) = −1
2

+
1
2
yh = 0

Thus we find the component φ0 with zero electric charge.

Exercise C
Find the value of the electric charge for the leptons in the
doublet QL.



Spontaneous electroweak symmetry breaking

With the choice of parameters µ2 < 0 and λ > 0 the Higgs
potential has its minimum on the surface

|H|2min = −µ2

2λ
=

v2

2

with v2 = −µ2/λ. We will choose the vacuum

〈0|H|0〉 =
(

0
v√
2

)



and set the fields around this vacuum as

H = exp
(

i

v
ξi(x)σi

) (
0

v+h(x)√
2

)
≡ U(x)H0 ,

where we have introduced the fields ξi(x) (i = 1, 2, 3) and
h(x) which “vanish into the void”.

The unitary phase matrix U(x) is a gauge transformation
of SU(2) and is a direct result of the unitary gauge. The
corresponding gauge transformation on the SU(2) gauge
fields lies in studying the covariant derivative

DµH =
(

∂µ + iW̃µ +
i

2
Bµ

)
U(x)

(
0

v+h(x)√
2

)



DµH = U(x)U(x)†
(

∂µ + iW̃µ +
i

2
Bµ

)
U(x)

(
0

v+h(x)√
2

)

= U(x)
(

∂µ + iW̃ ′
µ +

i

2
Bµ

) (
0

v+h(x)√
2

)
,

where the last equality is obtained by taking

W̃ ′
µ = −iU(x)†∂µU(x) + U(x)†W̃µU(x) .

In this way the matrix U(x) vanishes completely from the
Lagrangian:

LHiggs =
1
2
∂µh ∂µh +

1
8

(Bµ −W3µ) (Bµ −Wµ
3 ) (v + h)2

+
1
8

(W1µ − iW2µ) (Wµ
1 + iWµ

2 ) (v + h)2

+ λv2h2 + λvh3 +
λ

4
h4 − λ

v2

4
.

)



You can read the mass term for the Higgs boson as:

λv2h2 =
1
2
2λv2h2 =

1
2
m2

hh2

where we define:
m2

h = 2λv2 .

However, it is difficult to read the mass terms of the gauge
bosons due to the mixing of terms.

We must therefore define linear combinations appropriate
to the fields in order to eliminate mixing terms between
gauge bosons.

Before this we will reintroduce the coupling constants which
were hidden in the fields earlier

Bµ → g1Bµ , W̃µ → g2W̃µ , ÃA
µ → g3Ã

A
µ .

This will make the LY M I gave earlier look like the more
usual kinetic terms of gauge fields.



To find the diagonal form of the masses we will impose in
the appropriate area:

m2
W W+

µ W−µ ≡ g2
2v2

8
(W1µ − iW2µ) (Wµ

1 + iWµ
2 )

where
W±

µ =
1√
2

(W1µ ∓ iW2µ)

and the mass of the two gauge bosons is

m2
W =

g2
2v2

4
.



For the neutral gauge bosons the electrical charge imposes
a massless linear combination corresponding to the photon
as

1
2
m2

ZZµZµ+
1
2

0 AµAµ ≡ v2

8
(g1Bµ − g2W3µ) (g1B

µ − g2W
µ
3 ) .

The above equation can be written in terms of a mass
matrix
1
2
(Zµ, Aµ)

(
m2

Z 0
0 0

) (
Zµ

Aµ

)
≡ v2

8
(W3µ, Bµ)

×
(

g2
2 −g1g2

−g1g2 g2
1

) (
Wµ

3

Bµ

)

)



and the link between the two descriptions is an orthogonal
transformation

(
Zµ

Aµ

)
=

(
cos θw − sin θw

sin θw cos θw

) (
Wµ

3

Bµ

)

with

cos θw ≡
g2√

g2
1 + g2

2

sin θw ≡
g1√

g2
1 + g2

2

,

where θw is the Weinberg angle. The mass of the photon is
zero and that of the boson Z0 equals

m2
Z =

v2

4
(g2

1 + g2
2) .



Recall that the couplings of fermions to gauge fields were
given by covariant derivatives in LD. So if we expand LD

in terms of our “new” physical gauge fields we get1

Lem = −ieAµ (e†LσµeL + e†Rσ̄µeR) ,

with the interactions of charged weak currents

Lcc = i
g2√
2

(
W−

µ ν†
eLσµeL + W+

µ e†LσµνeL

)
,

and neutral weak currents

Lcn = i
g2

cos θw
Zµ

[
1
2
ν†

eLσµνeL −
1
2
e†LσµeL

+ sin2 θw (e†LσµeL + e†Rσ̄µeR)
]

.

1 Show that
1
e2

=
1
g2
1

+
1
g2
2



From the previous equations we can see the interactions
of charged and neutral currents have the same interaction
force.

We shall discuss quarks a little later.

Exercise D

Defining the scalar fields on the vacuum as follows:

H =
(

0
v√
2

)
+

(
φ+

h+iη√
2

)
≡ H0 + H ′ ,

find the spectrum of masses of Goldstone bosons and the
physical Higgs field in the theory.



Couplings of the Higgs boson

The Higgs Lagrangian can be written in terms of the new
fields

LHiggs =
1
2
∂µh∂µh +

1
2
m2

ZZµZµ + m2
W W+

µ W−µ

+
(

2h

v
+

h2

v2

) (
1
2
m2

ZZµZµ + m2
W W+

µ W−µ

)
+ V .

This shows that the scalar field, the Higgs, does not couple
to the photon and the coupling to the gauge boson masses
is proportional to the square of the masses of these bosons.

The couplings to fermions are obtained in the unitary gauge
from the Yukawa terms. For example in the case of leptons

Le
Yukawa = iye

iiL
T
i σ2ēiH

∗+h.c. = iye
iiL

T
i σ2ēiU

∗(x)H0 +h.c.



Using the Hermiticity of the matrix U∗ = (U†)T we can
define the new field L′

i = U†Li where the U matrix
disappears from the Lagrangian (we can verify that this is
also valid for the kinetic part of the fermions)

Le
Yukawa = iye

iiL
′T
i σ2ēiH0+h.c. = iye

iiL
′T
2iσ2ēi

(
v + h√

2

)
+h.c. .

Using ēLi = −σ2e∗Ri and the definitions

eRi = (eR, µR, τR) , L′
2iL = (eL, µL, τL)

for the names of leptons

Le
Yukawa =

i√
2
(v+h)

(
ye
11e

†
ReL + ye

22µ
†
RµL + ye

33τ
†
RτL

)
+h.c. .



You can then read off the masses of the leptons as

v√
2
ye

ii = (me, mµ, mτ ) .

In the notation of four-dimensional Dirac spinors

Le
Yukawa = i

v + h

v
(meēe + mµµ̄µ + mτ τ̄ τ) .

Doing the same thing for up-type quarks

Lu
Yukawa = iyu

jjQ
T
i σ2Vjiū

′
jτ2H + h.c.

= iyu
jjQ

T
i σ2Vjiūjτ2UH0 + h.c.



and with τ2τiτ2 = −τ∗
i

τ2U = U∗τ2 = (U†)T τ2

we can remove U in a redefinition of the field Q′
i = U†Qi:

Lu
Yukawa = iyu

jjQ
′T
i σ2Vjiū

′
jτ2H0 + h.c.

=
i√
2
yu

jjQ
′T
1iσ2Vjiū

′
j(v + h) + h.c.

with V the unitary matrix of mixing, the Cabibbo-Kobayashi-
Maskawa (CKM) matrix:

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 .



If we define the mass eigenstates

uL = V1iQ
′
1i , cL = V2iQ

′
1i , tL = V3iQ

′
1i ,

ū1 = iσ2u
∗
R , ū2 = iσ2c

∗
R , ū3 = iσ2t

∗
R ,

we can write the Yukawa couplings with the notation of the
4-component Dirac spinors:

Lu
Yukawa = i

v + h

v
(muūu + mcc̄c + mtt̄t)

with the masses

yu
jj

v√
2

= (mu, mc, mt) .



The CKM matrix has been eliminated in terms of mass by
a redefinition of the fields, but it can not be completely
eliminated from the Lagrangian and will therefore intervene
in the interaction terms.

For quarks of the down-type this is not a complication of
the matrix V since it was associated with quarks of up-type:

Ld
Yukawa = iyu

jjQ
′T
i σ2d̄iH

∗ + h.c.



In the four-component Dirac notation for spinors one
obtains

Ld
Yukawa = i

v + h

v

(
mdd̄d + mss̄s + mbb̄b

)

with the masses

yd
jj

v√
2

= (md, ms, mb) .

The results of this analysis shows that the couplings of the
Higgs boson is a universal coupling which is proportional
to masses.


