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Wavelength continuously tunable !
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The “brightness” of a light source:

Flux, F

F
S x Ω

Brightness = constant x _________
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Higher brightness: more photons on small sample 
or through a pinhole of ~ λ: coherence

 measurements on very small probes 
(few µm crystals)

 small divergence:
 compact mirrors, optics elements
 minimized aberrations

 short measurement times

 high transverse coherence
 phase contrast imaging



The electron beam “emittance”:

Emittance  =  S x Ω

Angular 
divergence, Ω

Source 
area, S The brightness 

depends on the 
geometry of the 
source, i.e., on 
the electron 
beam emittance



Synchrotron Radiation Basics, Lenny Rivkin, EPFL & PSI, Stellenbosch, South Africa, August 2010

Radiation effects in electron storage rings

Average radiated power restored by RF
• Electron loses energy each turn
• RF cavities provide voltage to accelerate electrons

back to the nominal energy
Radiation damping

• Average rate of energy loss produces DAMPING of electron 
oscillations in all three degrees of freedom (if properly 
arranged!)

Quantum fluctuations
• Statistical fluctuations in energy loss (from quantised emission 

of radiation) produce RANDOM EXCITATION of these oscillations
Equilibrium distributions

• The balance between the damping and the excitation of the 
electron oscillations determines the equilibrium distribution of 
particles in the beam

   U0 ≅ 10– 3 of E0

  VRF > U0
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Radiation is emitted into a narrow cone

v << c v ≈ c

  
θ = 1

γ ⋅ θe



RADIATION DAMPING

TRANSVERSE OSCILLATIONS
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Average energy loss and gain per turn
 Every turn electron radiates small 

amount of energy

 only the amplitude of the 
momentum changes

  
E1 = E0 – U0 = E0 1 –

U0
E0

  
P1 = P0 – U0

c = P0 1 –
U0
E0

 Only the longitudinal component 
of the momentum is increased in 
the RF cavity

 Energy of betatron 
oscillation

   Eβ ∝ A2

   
A1

2 = A0
2 1 –

U0
E0

or A1 ≅ A0 1 –
U0
2E0
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 But this is just the exponential decay law!

 The oscillations are exponentially damped
with the damping time (milliseconds!)

 In terms of radiation power

and since 

   
∆A
A = –

U0
2E τteAA −⋅= 0

Damping of vertical oscillations

0

02
U

TE
=τ the time it would take particle to 

‘lose all of its energy’
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Damping only
• If damping was the whole story, the beam emittance (size) 

would shrink to microscopic dimensions!
• Lots of problems! (e.g. coherent radiation)

Quantum fluctuations
• Because the radiation is emitted in quanta, radiation itself 

takes care of the problem!
• It is sufficient to use quasi-classical picture:

» Emission time is very short
» Emission times are statistically independent 

(each emission - only a small change in electron energy)

Quantum nature of synchrotron radiation

Purely stochastic (Poisson) process



Visible quantum effects

I have always been somewhat amazed that a purely quantum 
effect can have gross macroscopic effects in large machines;

that Planck’s constant has just the right magnitude needed to 
make practical the construction of large electron storage rings.

A significantly larger or smaller value of 

and, even more,

would have posed serious -- perhaps  insurmountable --
problems for the realization of large rings.



Mathew Sands
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Excitation of betatron oscillations

Electron emitting a photon 
• at a place with non-zero dispersion
• starts a betatron oscillation around a new 

reference orbit

E
Dx γ

β
ε

⋅≈



Horizontal oscillations: equilibrium

Emission of photons is a random process
 How far particle will wander away in this random walk is 
limited by the radiation damping
 The balance is achieved on the time scale of the damping 
time τx

 Typical horizontal beam size ~ 1 mm

 Vertical size - determined by coupling

Quantum effect visible to the naked eye!

E
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εγ
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Ring equilibrium emittance

σ0

σ′0

to minimize the 
blow up due to 
multiple 
scattering in the 
absorber we can 
focus the beam  

σ′ = σ′0
2 + σ′MS

2   σ′0 >> σ′MS

Equilibrium Emittance
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3 types of storage ring sources:

1. Bending magnets:

short
signal 
pulse

broad
hν-band

time frequency

B ~ Ne

detector



3 types of storage ring sources:

2. Wigglers: large
undulations

Series of 
short 

pulses

broad
hν-band

frequencytime

B ~ NeNw    x10



3 types of storage ring sources:

3. Undulators:
small

undulations

detector
continuously 
illuminated

time

long
signal 
pulse

frequency

hν/∆hν
≈ N

detector

narrow 
hν-band

B ~ NeN2
u    x103



Linac 100 MeV

Booster 2.7 GeV

Storage Ring

Undulators

Beam lines

Anatomy of a light source



J.Als-Nielsen, Des Mc Morrow

About 60 ring sources world-wide



In-vacuum undulators / s.c. undulators

Gaps
down
to
3 mm



Zhentang Zhao PAC07, Albuquerque, New Mexico, June 25, 2007

Third Generation Light Sources in Operation
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Top-up injection: key to stability

TOP-UP INJECTION
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< 1 µm

Steady state glow at the SLS



The electron beam “emittance”:

Emittance  =  S x Ω

Angular 
divergence, Ω

Source 
area, S The brightness 

depends on the 
geometry of the 
source, i.e., on 
the electron 
beam emittance



Betatron oscillations
• Particles in the beam execute betatron oscillations with 

different amplitudes.
Transverse beam distribution

• Gaussian (electrons)
• “Typical” particle: 1 - σ ellipse

(in a place where  α = β’ = 0)

Beam emittance

x

x’

σx

σx’

  Area = π ⋅ε

   Units of ε m ⋅ rad   
Emittance ≡

σx
2

β    σx = ε β
σx′ = ε /β

   ε = σx ⋅ σx′

   
β = σx

σ x′



Zhentang Zhao PAC07, Albuquerque, New Mexico, June 25, 2007

Third Generation Light Sources
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BRIGHTNESS:

PERFORMANCE OF 3th GENERATION LIGHT 
SOURCES

DIFFRACTION LIMIT

PHOTON ENERGY [eV]
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COHERENT EMISSION BY THE ELECTRONS 

INCOHERENT EMISSION COHERENT EMISSION

Intensity ∝ N Intensity ∝ N 2



T. Nakazato et al., Tohoku University, Japan

FIRST DEMONSTRATIONS OF  COHERENT EMISSION
(1989-1990)

J. Ohkuma et al., Osaka University, Japan
180 MeV electrons 30 MeV electrons



WAVELENGTH

MUCH HIGHER BRIGHTNESS CAN BE REACHED 
WHEN THE ELECTRONS  COOPERATE

INCOHERENT EMISSION COHERENT EMISSION
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GENESIS - simulation for TTF parameters
Courtesy - Sven Reiche (PSI)

undulator
entrance

half-way
saturation

full
saturation

Microbunching through SASE Process
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Ultrafast  X-ray science

 X-ray Free Electron Lasers extend the ultrafast laser 
techniques to the X-ray domain 

 „Seeing“ structures evolving with time as 
phenomena take place

 FEMTO: Slicing technique at synchrotrons

 Similar technique to reach < 1 fs with XFELs

„If you want to understand function,
study structure“

Francis Crick



Fast processes and short pulses

Laser pump / X-ray probe

Centre for Molecular Movies, Niels Bohr Institute, University of Copenhagen www.cmm.nbi.dk             M. Nielsen



1878: E. Muybridge at Stanford

E. Muybridge,  Animals in Motion, ed. by L. S. Brown (Dover Pub. Co., New York 1957).

Tracing motion of animals 
by spark photography

Muybridge and Stanford disagree whether all feet leave the ground at one 
time during the gallop…

E. Muybridge
L. Stanford




Laser slicing
Pioneering ideas and experiments at ALS

Facilities at ALS, BESSYII, SLS
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FELs and ERLs COMPLEMENT the Ring sources

H.-D. Nuhn, H. Winick After H.-D. Nuhn, H. Winick 
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