Calculation of Gain Fluctuations

Heinrich Schindler

CERN

February 23, 2010

1 / 17

- For uniform fields, simplified models emphasizing aspects like ionisation threshold and interplay of ionising vs. non-ionising inelastic collisions have been devised
- Theoretical framework by G. D. Alkhazov (1970)
- \bullet Probability of ionisation depends on path ξ travelled since the last ionising collision
- Gain spectrum is determined by the distribution $\rho(\xi)$ of this "ionisation distance"
- $\rho(\xi)$ can be compared to realistic MC calculations

2 / 17

• Legler's model

$$\rho(\xi) = e^{-\alpha(\xi - x_0)}\Theta(\xi - x_0)$$

3 / 17

HS (CERN) Gain Fluctuations February 23, 2010

• Pólya "model"

$$\rho\left(\xi\right) = \frac{\Gamma\left(2\left(\theta+1\right)\right)}{\Gamma\left(\theta+1\right)^{2}} \alpha e^{-\alpha\left(\theta+1\right)\xi} \left(1 - e^{-\alpha\xi}\right)^{\theta}$$

(4日) (個) (量) (量) (量) (9Qで)

Stepwise Evolution

$$\rho_k = p \left(1 - p\right)^{k-1}$$

Magboltz Model

- In a realistic simulation of gain fluctuations one needs to take
 - ionising and non-ionising inelastic collisions,
 - ▶ energy dependence of scattering rates into account → Magboltz cross-sections and algorithm
- Input parameters: field configuration, initial energy and direction
- Energy of secondary electrons is sampled according to

$$rac{\mathsf{d}\sigma}{\mathsf{d}arepsilon'} \propto rac{1}{1+\left(rac{arepsilon'}{w}
ight)^2}$$

with gas dependent constant w.

Experimental Data

Direct measurements of ("rounded") single electron gain spectra in constant fields:

- Parallel plate chamber, extraction of single electrons from cathode with UV lamp
 - Schlumbohm (1958): Methylal
 - ► Cookson and Lewis (1966), Vidal (1974): Methane
- Recent measurements with Micromegas
 - ▶ T. Zerguerras et al.: Ne/iC_4H_{10}
 - ▶ P. Colas et al.: Ar/iC_4H_{10}

Methylal

good agreement between simulation and exp. data, but cross-sections are not reliable (bad rating in Magboltz database) and actually partially extracted from Schlumbohm's data

•
$$E/p = 70 \text{ V cm}^{-1} \text{ Torr} - 1$$

•
$$E/p = 426 \text{ V cm}^{-1} \text{ Torr} - 1$$

HS (CERN) Gain Fluctuations February 23, 2010 8 / 17

Measurements by Cookson, Lewis and Ward (1966)

E/p	θ (meas.)	θ (calc.)
48.2	0.0	0.01
51.3	0.1	0.12
78.9	0.3	0.28
120.0	0.4	0.50
156.0	1.0	0.75
218.0	1.2	1.20

Energy distribution

• Ionising vs. non-ionising collisions

• Distance between ionising collisions

Measurements with Micromegas

- \bullet Both Ne/iC₄H₁₀ and Ar/iC₄H₁₀ are Penning mixtures
- Penning transfer probability r for Ar/iC₄H₁₀ extracted from gain curve fits:

$$r \approx 0.4$$

- Simple model:
 - ▶ All Ar excitations lead with probability *r* to a secondary electron
 - no time delay
 - electrons produced "on the spot"

$\mathsf{Ar}/\mathsf{iC_4H_{10}}$

50 μ m gap:

V_{mesh}	θ (without Penning)	θ (with Penning)
320	1.13	2.50
330	1.40	2.59
340	1.22	2.70

Ne/iC_4H_{10}

Example: E = 30 kV/cm

Calculation (without Penning transfer)

• $\theta \approx 1.6$

 Measurement (Zerguerras et al. 2009)

• $\theta \approx 2.2$

Summary

- Magboltz model provides fair agreement with "classic" measurements (Methylal, CH₄)
- Toy models may help for qualitative understanding (importance of ionising vs. non-ionising energy losses)
- Detailed modelling of Penning transfer (e. g. photon emission/reabsorption) to be included
- Impact of space charge