Micromegas for a DHCAL

M. Chefdeville, A. Espargiliere LAPP, Annecy

Micromegas for a DHCAL

- Introduction
 - PFA oriented detectors & DHCAL R&D @ LAPP
- Reminder: beam test results with small prototypes
 - Studies with analog prototypes
 - Studies with digital front end electronics
- The 1 m² Micromegas prototype
 - Design
 - Mechanical prototype
 - Active Sensor Unit (ASU) fabrication and tests
- Conclusion & future plans

Calorimetry at future e⁺e⁻colliders

- Jet energy resolution at future e⁺e⁻ colliders (better than 30%/√E)
 - Dual readout
 - ILC 4th concept LOI not accepted, but original calorimetry technique
 - Particle Flow Algorithm (PFA) (SiD, ILD)
 - Combine measurements of tracker and calorimeters

Need imaging capability of calorimeters to identify single particle contributions

PFA:

- Charged particle energy measured with tracker (much more precise)
- Charged particle contribution removed from calorimeter hits
- Calorimeters measure neutral energy only

Calorimetry at future e⁺e⁻colliders

- PFA
 - → high lateral & longitudinal segmentation of ECAL and HCAL
 - e.g. HCAL @ ILC:
 - 4.5 λ_i , inside coil (40 layers of steel)
 - 2.8 cm sampling period (8 mm gaps)
 - 1-9 cm² readout cells
- Total area ~ 3000 m² (SiD) → (semi-)Digital readout
- Semi-DHCAL R&D in France
 - RPC and Micromegas
 - 1 m³ physics prototype made of 40 m² planes

Micromegas for DHCAL (1)

Prototypes layout :

- Bulk technolgy (128 µm amplification gap)
- 3 mm conversion gap
- 8 mm thick (with embedded front-end chips)
- 1 cm² readout pads
- Cathode glued on 2 mm steel lid (part of absorber)

Micromegas for DHCAL (2)

- Operating conditions
 - Argon based mixtures
 - Ar/iC₄H₁₀ 95/5 (mostly used)
 - Ar/CO₂, various mixings
 - Bias voltage below 500 V
 - $V_{\text{mesh}} = 420 \text{ V}$
 - $V_{drift} = 470 \text{ V}$

Micromegas for DHCAL (3)

- Operational caracteristics (G(V), G(P), G(T))
 - Gain over 10⁴ in all gas mixtures
 - $dG/dP = -0.61\% \text{ mbar}^{-1}$
 - $dG/dT = 1.37\% K^{-1}$

Analog readout prototype beam tests

- Four prototypes (3 of 6x16 pads and 1 of 12x32 pads)
 - GASSIPLEX readout + VME ADC
- TB @ CERN for caracterisation
 - SPS/H2 august 2008 (200 GeV/c muons)
 - PS/T10 november 2008 (7 GeV/c pions)

At 1.5 fC threshold

Landau MPV ~22 fC
Variations ~ 1 %
Efficiency > 97 %
Variations < 1 %
Multiplicity < 1.12

Analog readout prototypes Profile of 2 GeV/c e⁻ showers

- Data acquisition with varying number of absorber plates in front of the 12x32 cm² prototype (CERN/PS/T10, may 2009)
- Validates prototypes functioning in showers
- Data corrected for T and P variations

Almost no effect on profiles

Prototypes with embedded digital readout

- DHCAL compactness → embedded front-end
- Modify Bulk process:
 - Readout chips are soldered first on PCB
 - Mesh laminated using a mask for chips protection
- First prototype: 8x8 cm² with 1 DIRAC version 1 ASIC

(a) PCB with electronics.

(b) Mask for lamination.

(c) Mask glued to PCB. (d) PCB: anodes with the mesh.

(e) Drift frame.

(f) Drift cathode.

TB results with digital prototypes Active Sensor Units (ASU)

- HARDROC v1
 - ____PS/T10 in May/June 2009
 - DAQ problems, event reconstruction difficult
 - Beam profile obtained, analysis on-going
 - Low efficiency, shaping time too short wrt μM signals
- Micromegas specific chip needed

Beam profile in an 8x32 cm2 chamber

TB results with digital prototypes Active Sensor Units (ASU)

DIRAC version 2

PS/T9 in November 2009

- Short life time in beam due to spark problem understood, design mistake should be fixed in next version
- Few data available, preliminary results
- Efficiency ~50%
 OK considering duty cycle of ASIC
- Multiplicity = 1.06 1.13

22 feb. 2010

1 m² Micromegas prototype

- 6 ASUs of 32x48 cm² (24 ASIC each)
 - 3 times 2 ASU chained
 - 1536 channels x 6 = 9216 channels
 - Dead area < 10%

Mechanical prototype

- Dummy PCB
 Validate assembly procedure
 Choice of components
- Gas tightness verified

22 feb. 2010

ASU fabrication

- Connection of 24 ASIC HARDROC v2
 + spark protection components on 32x48 cm² PCB
- Mesh lamination at CERN on 4 ASU so far
 - Mesh tension issues on the 2 first processed
 → disconnect a few pads close to PCB edges
- Prior to m² assembly, test of each ASU
 - Electronic test and calibration
 - "Cooking" of mesh
 - Gas box for testing single ASU with radiations

ASU electronic test

- S-curves measurements:
 - Pedestals and charge injection runs
 - Identify noisy channels
 - Measure and correct for channel to channel gain variations
 - → Set detection threshold to minimum

22 feb. 2010

ASU "cooking"

- Aimed at removing dust particles that could remain after Bulk process
 - Connect mesh to HV through 2 M Ω R
 - Current limit of ~ 200 nA
 - Raise mesh voltage up to 900 V in air
- About 3 h long
- Plans to do it automatically with a LabView program

ASU test in gas box

Gas test box

- 3 cm drift gap (8 liters)
- Guard electrodes for field uniformity
- Thin cathode for X-ray test
- Perforated cover test of individual pads

55Fe profile on one HR2

ASU in gas test box

ASU test in a beam

- PS/T9 in Nov 2009, ASU in gas box
- 2 different configurations
 - Parallel for efficiency measurement as no external tracking available
 - Perpendicular (beam profile)

22 feb. 2010

ASU test in a beam

Perpendicular mode

Beam profile recorded on three different positions

Parallel mode

Conclusion and future plans

- ASU test on-going, 1 m² assembly foressen in March, cosmic test @ LAPP before beam test
- Beam test at SPS planned in July

Modify DAQ to read both HR1 and HR2

- → external tracking (HR1 stack)
- → efficiency, multiplicity and uniformity of m²
- Construction of more m² planes
 - Which front-end ASIC: DIRAC, HARDROC?
 - New spark protection inside PCB?

Thanks for your attention!