

Neutrons in gases

Mary Tsagri CERN PH / SFT

Tuesday, 23 February 2010

RD51 mini week

Overview

→ Types of interaction and importance

♦ Neutron Cross-Section in Geant4 / Validation

♦ Neutrons & DM

♦ Neutrons & mM

♦ Geant4 / Garfield

Interaction of neutrons with matter

Cross section depends on:

- Kinetic energy T_n
- Nuclear structure

All neutrons are initially Fast Neutrons which lose kinetic energy through interactions with their environment until they become thermal neutrons which are captured by nuclei in matter.

Neutron Contribution at LHC

- ➤ En = 1 10 MeV
- > Noise
- ightharpoonup e.g. ATLAS: $\sim 10^{14} \text{ n/cm}^2/\text{year} = 10^7 \text{ n/cm}^2/\text{sec}$

Slow neutron flux: $\sim 10^9 \text{ n/cm}^2/\text{sec}$ for $L=10^{34}/\text{cm}^2/\text{sec}$

Interaction of neutrons with matter * Elastic Scattering *

1. Elastic Scattering

- Neutron collides with atomic nucleus
- Neutron deflected with loss of energy E
- E given to recoiling nucleus
- Struck atoms can also lose orbital electron
- Energy of recoiling nucleus absorbed by medium.

 The recoil nuclei quickly will transfer their kinetic energy to ionisation as they pass through the material.

Interaction of neutrons with matter * Elastic Scattering *

Conservation of Energy and Momentum:

$$E_{\min} = E_0 \left(\frac{M - m}{M + m} \right)^2$$

E_{min} = energy of scattered neutron

Eo = Initial energy of neutron

M = mass of the scattered nucleus

m = mass of neutron <>< Same relation applies to the recoil of a nucleus caused by a WIMP!

→ Hydrogen good for stopping neutrons.

Interaction of neutrons with matter Radiative Capture *

3. Neutron Capture

- Neutron captured by nucleus
- Only γray emitted
- Probability of capture is inversely proportional to the energy of the neutron

--- Low energy (=thermal neutrons) have the highest probability for capture

Interaction of neutrons with matter * Inelastic Scattering *

1. Inelastic Scattering

- Neutron captured by nucleus
- Neutron reemitted with less energy and nucleus left in excited state
- Nucleus relaxes by emitting γ-rays and/or charged particles (adds to E deposit)

> neutrons in Geant4

Neutron Cross-Sections given by JANIS 3.0.

(Java-based Nuclear Information Software)

• Geant4.9.2p01

>> Physics Lists: QGSP_BERT_HP

Hadronic Example: Hadr00

- 1. Elastic XS
- 2. Sum of "Inelastic" and Capture XS → Non Elastic XS

Data Libraries:

- 1. Elastic XS
- 2. Total XS Elastic XS → Non Elastic XS

Available neutron Data Libraries:

ENDF/B-VII.0

S

: Evaluated Nuclear Data File

ENDF/B-VI.8

(December 2006 and 2001, respectively)

JEF-2.2

: Joint Evaluated File (January 1997)

JEFF-3.0

: Joint Evaluated Fission and Fusion,

"...this library superseded JEF-2.2..." (April 2002)

JEFF-3.1

: "...this library superseded JEFF-3.0..." (May 2005)

JENDL-3.3

: Japanese Evaluated Nuclear Data Library (2002)

- There can exist discrepancies between them.
- "New" does not mean "better".

Natural composition of Argon

- Agreement between Geant4 NDL and the "old" libraries at all energy regions. Large discrepancies with "new" libraries.
- ✓ For the case of Argon, G4NDL uses JEF 2.2 / JEFF 3.0.

Alternative G4 format libraries, using recent evaluations, are being developed.

ENDF/B-VII.0: Blue JEFF-3.1: Purple

Results available also for natural compositions of:

Hydrogen Carbon Oxygen Helium Krypton Xenon

> neutrons & DM

Weakly Interacting Massive Particles

WIMP is a general term for a heavy dark matter particle candidate, whose non gravitational interactions are feeble and his interaction with matter resembles that of a "heavy" neutron.

"Neutrons - scatter off nuclei ...just like WIMPs! "

http://cdms.berkeley.edu/Education/DMpages/science/directDetection.shtml

simulation

40 keV Ar recoils from WIMPs 500 Nips

15 keV as from radioactivity 500 Nips

13 keV e⁻s from radioactivity 500 Nips

> Micromegas & neutrons

Geant4 9.2.p01

PhysList: QGSP_BERT_HP

Gas Mixture: 95% Ar + 5% C₄H₁₀

SensitiveDetector: 5.9mmx10cmx10cm

Incident Number of Neutrons: 10⁸

Entries: $\sim 7 \times 10^4$

$$E_n = \sim 5.4 \text{ MeV}$$

Energy deposited by neutrons in Micromegas detector

Geant4 / Garfield An Interface

Interfacing Geant4 with Garfield: A First Prototype

Stefan Guindon
Institute of Particle Physics
CERN Summer Student 2008

26. August 2008 PH-SFT Meeting Stefan Guindon

ATLAS Muon Tube Prototype

- To illustrate the interface example, a muon tube is created in a Geant4 program
- Shoot a 10 GeV muon at the tube, using Geant4 to find its entrance point (3 Vector) and direction of flight.
- Pass parameters:
 - Hit position, Tubes' radii to Garfield

26. August 2008 PH-SFT Meeting Stefan Guindon

Conclusion and Future Work:

- Interface between Geant4 and Garfield Successful
 - Can run Garfield Simulation in Geant4 and exchange information
- Basic interface complete however Garfield has many more features
 - More ionization models
 - FEA field maps
 - Magnetic fields
 - Signal Calculations

Thank you!