

Progress on double phase LAr LEM-TPC

A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, F. Resnati, A. Rubbia, T. Viant

Introduction

- A double phase pure argon LEM-TPC is a tracking and calorimetric device capable of charge amplification.
- Possible applications are:
 - Giant detector for neutrino physics and proton decay.
 A. Rubbia, arXiv:hep-ph/0402110, 2003
 - Dark matter imaging detector.
 A. Rubbia, J. Phys. Conf. Ser. 39 (2006) 129
 - Recent articles:
 - I) A. Badertscher et al., arXiv:0811.3384, 2008
 - 2) A. Badertscher et al., arXiv:0907.2944, 2009

Working principle

- Charge and light are produced by an ionizing event in the LAr.
 - VUV light is detected by PMTs, it provides the time reference of the event.
- The charge is drifted to the LAr surface and extracted into the vapour phase.
 - The drift field is 0.5-1kV/cm, the extraction field (>2.5kV/cm) is provided by two grids.
- The charge is driven into the LEM holes where the electron multiplication occurs.
- The moving charges induce signals on the readout electrodes.

3L setup @ CERN

argon purification system

input purification cartridge

turbo pump

detector vessel

cryostat (LAr bath)

power supplies

charge DAQ system

Detector details

LEM: production

total area

Characteristics:

- High discharge resistivity.
- Mechanically robust.
- Possibility to cover large areas.

Standard PCB technique:

- Double sided copper cladded FR4 plate.
- Precision holes by drilling.
- Etched rims.

Manufacturer: Multi PCB Ltd (Germany)

thickness	1.0, 1.2, 1.6 mm
hole diameter	500 μm
hole pitch	800 µm
rim size	50 μm
segmentation	16 strips, 6 mm pitch

guard ring 6 mm strips

 $10 \times 10 \text{ cm}^2$

LEM: charge readout

After the amplification the electrons induce signals on segmented electrodes. Two views and drift time allow the spatial reconstruction.

Top LEM and anode segmented: 2x16 strips, 6 mm pitch

Top LEM

Anode

Ideal configuration:
50% collected on the top LEM
50% collected on the anode

LAr purification system

To drift 20 cm @ IkV/cm the impurities have to be \sim 2ppb (O₂ eq). LAr purification is needed.

Input purification:

•A custom made cartridge purifies LAr at the detector input.

Recirculation:

- •Heating resistors evaporate LAr in the detector.
- •A metal bellows pump pushes GAr through a commercial getter (Ivolume in 48h).
- The pure GAr condensates in the detector volume.

LEM-TPC: imaging device

Double phase operation (87K, I bar) Gain ~ 6.5

LAr purity ~ 2ppb

Typical comic muon tracks

strip number

LAr purity

Very good purity at the beginning (< Ippb O₂ eq). LAr purification behaves as expected.

Cosmic muon data

- 1) 3D reconstruction of the events.
- 2) Evaluation of the track length (dx) below each strip.
- 3) Evaluation of the charge (dQ) collected by each strip.

A Gauss convoluted Landau distribution is fitted to dQ/dx distribution of long muon tracks

•In LAr a MIP releases ~2.1MeV/cm.

•dQ/dx (@500V/cm)

Two views anode (I)

Readout pitch	3mm
Strip pitch	600µm
Covered strip width	500µm
Exposed strip width	I20µm
Kapton thickness	50µm

Advantages:

- Decouple the amplification and the readout stages.
- The charge coming from the LEM is shared between X and Y coordinates.
- No strips and capacitors on the LEMs.
- Same signal shape of both coordinates.

50% 50%

Two views anode (II)

A 10x10cm² prototype is already produced and soon will be tested. Acknowledgements go to CERN PCB workshop.

Improved LEM design & manufacturing

Thanks to discussion with Rui de Oliveira the LEMs were design as an independent amplification device improving the manufacturing procedures.

Design:

- •No strips on the LEMs (smaller probability of discharge).
- •Smaller rim and perfectly centered on the hole.
- Thicker electrodes (more spark resistant).

Tests:

- The LEMs had been tested in air.
- Test in pure gas argon at different pressure are ongoing.
- Important measure for the understanding of the device in pure argon gas.

total area	10×10 cm ²
thickness	0.6, I.0, I.6 mm
hole diameter	500 μm
hole pitch	800 µm
rim size	I0 μm

GAr test of 1.6mm LEM

Status of ArDM experiment

- ArDM (REI8) is a ton scale dark matter search experiment, the detector is under development at CERN.
- The detector already operated (single phase LAr) on surface (blg. 182).
- Light yield measurements were performed irradiating the detector with different radioactive sources.
- A new run (double phase conditions) with a temporary charge readout system is planned for middle of April.
- The aim is to build a LEM readout system for ArDM detector.

LEM readout

High voltage generator

Field shaper

Drift length	I20cm
Diameter	80cm
Target mass	850kg
Drift field	I-4km
Recirculation speed	~ I 00I/h

2009 cool down test

- I) Cool down. Detector under vacuum.
- 2) Measurements in cold pure argon gas.
- 3) Detector half filled with LAr Measurements.
- 4) Detector fully filled with LAr Measurements.
- 5) Warm-up phase.

8 PMT were installed

Internal sources:

•Movable ²⁴¹Am (40kBq, α γ).

External sources:

- ²²Na (20kBq, γ).
- ¹³⁷Cs (190kBq, γ).
- •Am-Be (n γ).

Upgrade of ArDM charge readout

The system has to be modular (sandwich approach).

The holder and the movable hanging already exists.
The mechanical reference will be the anode.

Independent layer:

- 1. Anode and signal routing PCB.
- 2. LEM stage(s).
- 3. Extraction grids.

Conclusions & outlooks

- Operated a double phase pure argon LEM-TPC.
 - Detector properties well understood and reproducible.
 - Very stable conditions achieved.
- Test in double phase condition the new LEMs and the two views anode.
- Design and produce the charge readout system for ArDM.
 - Final LEM geometry to be decided.
 - Engineering problems have to be solved (rigidity of the system, spacers needed, wiring, ...).
 - The aim is to produced Ø80cm LEM in one piece (60x60cm² LEMs have been already produced).
 - Discuss the possibility of assembling the two views anode with different smaller pieces.

ArDM charge readout

- The following considerations are extrapolated from the result of the 3I setup.
- Considering S/N = $10 @ 10 \text{keV}_{ee} \rightarrow G \sim 300 \text{ is required.}$
- Surface operation goals:
 - Study the behaviour of the LEM readout system.
 - Perform the characterization with cosmic muons.
- Shallow depth operation goals:
 - Increase the gain up to design operation.
 - Study the intrinsic background.
 - Learn how to deal with high rate and pileup.

ArDM Operation

• Surface operation:

- ~200Hz of cosmic muons crossing the detector (~2MeV/cm).
- To avoid discharges event induced the required gain is 10-50.
- Single amplification stage is enough.

• Underground operation:

- Muon rate is reduced of a factor 100.
- The required gain is 100-1000.
- Double amplification stage is needed (three amplification stages are feasible only with thin LEMs).

Summary of observations

- The single 1.6mm LEM gains some hundreds.
- Good discharge hardness.
- Well defined breakdown voltage.
- The maximum gain decreases with pressure (density).
- We need to gain at higher density (87K, Ibar ~3.5x STP):
 - If the number of collision in the holes and the energy of the accelerated electrons is constant, the gain is constant too.
 - $K_{e^-} \propto \Delta V/(d \cdot \rho)$, $\#_{coll} \propto d \cdot \rho$ with ρ : GAr density, d: scale factor.
 - We need to keep constant $d \cdot \rho$.
 - Example:
 - The gain of Imm LEM @ Ibar is the same as the gain of 0.5mm LEM @ 2bar (ΔV constant)