The Higgs sector in the MSSM

Wolfgang Frisch

<u>Outline</u>

- The Higgs sector in the Standard Model
- Naturalness problem
- Supersymmetry and the MSSM
- The MSSM Higgs sector at tree level
- Decoupling limit
- Loop corrected Higgs mass
- Higgs searches/production at LEP&LHC

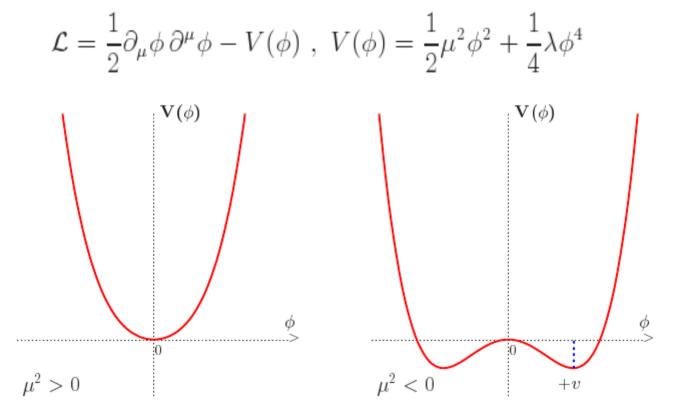
The Higgs sector in the Standard Model

• The Standard model contains one Higgs doublet, that gives masses to up, down – quarks and leptons.

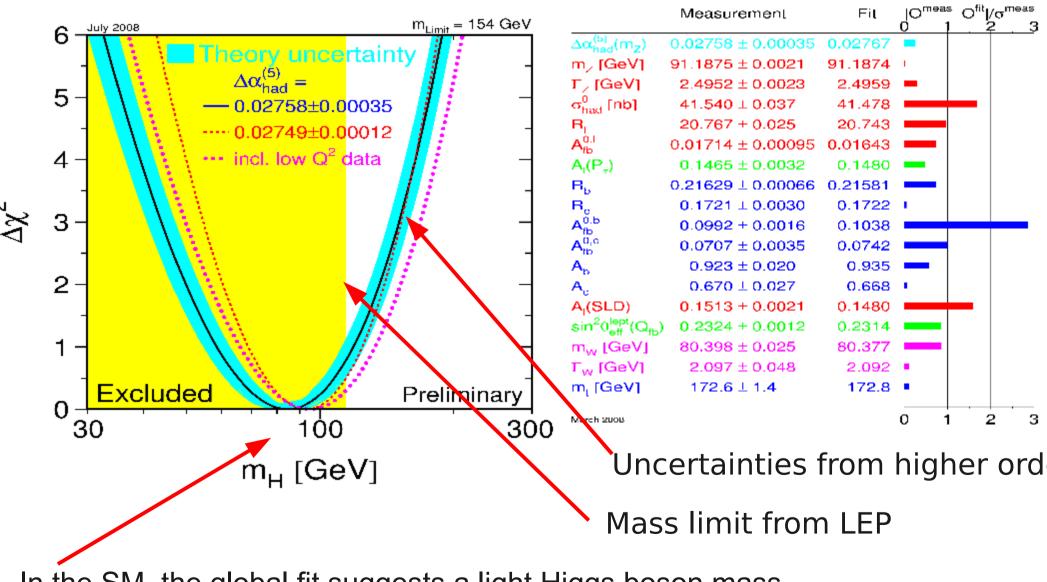
$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 - i\phi_2 \\ \phi_3 - i\phi_4 \end{pmatrix}$$

- ${\rm SU}(2)_{\rm L} \times {\rm U}(1)_{\rm Y}$ $\;$ is spontaneously broken down to electromagnetism

$$U(1)_{\rm EM}$$



The Higgs sector in the Standard Model

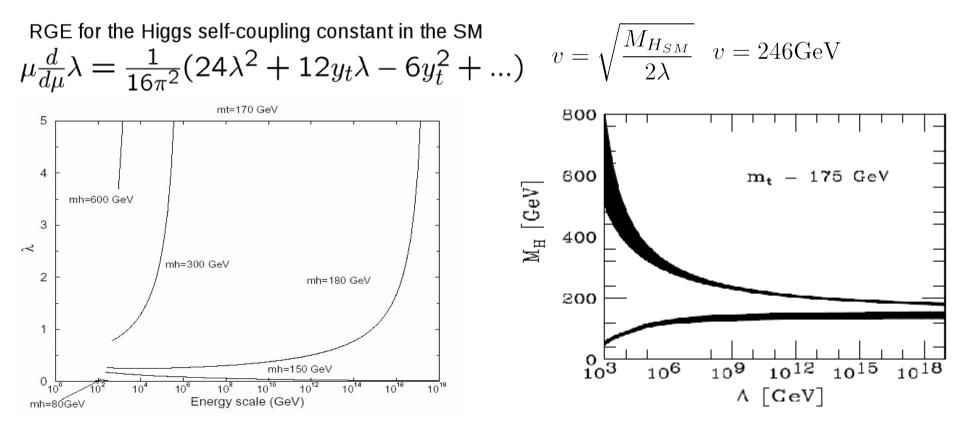


In the SM, the global fit suggests a light Higgs boson mass

Naturalness problem

- Is the Standard Model valid up to the Planck scale ?
- Limits on the SM Higgs mass
- Three Higgs boson mass ranges

1.	110 GeV	\leq	$M_{H_{SM}}$	\leq	130 GeV	Λ	λ_H goes negative, destabilizes vacuum
2.	130 GeV	\leq	$M_{H_{SM}}$	\leq	180 GeV	M_{PL}	no new physics up to the Planck scale :(
3.	180 GeV	\leq	$M_{H_{SM}}$	\leq	190 GeV	Λ	λ_H blows up



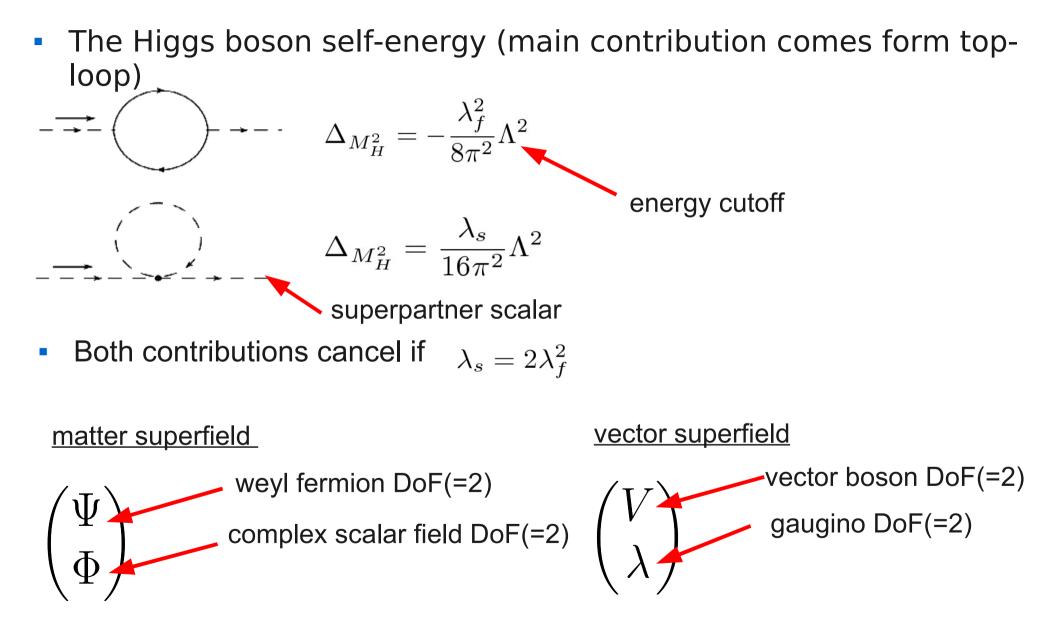
Naturalness problem

- Nothing restricts the SM to survive up to the Planck Scale if the Higgs mass is in the region from 130-180 GeV. However this is unnatural.
- If the cutoff scale Λ is very high, fine tuning of the Higgs boson mass is a serious problem. The squared Higgs boson mass depends quadratically on the cutoff scale Λ.

$$m_{phys}^2 = m_0^2 + g^2 \Lambda_{cutoff}^2$$

- We need to find a reason to keep the Higgs boson mass light. The mass of the Higgs boson should be located in the electroweak scale.
- Idea: There is a symmetry that protects the Higgs boson from receiving too large corrections.

Supersymmetry



The MSSM

- The MSSM is the minimal supersymmetric extension of the SM
 - Minimal (=1) set of SUSY generators
 - Minimal (=2) set of Higgs doublets H₁, H₂

				Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates			
S	U	С	t	γ		Higgs bosons	0	+1	$H^0_u H^0_d H^+_u H^d$	$h^0 H^0 A^0 H^{\pm}$	
Quarks	d	0			a a se a su la s	0	1	$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(same)		
	1	Supersymmetry is broken in nature									
ű	e	·μ	τ		e (sleptons	0	-1	$\widetilde{\mu}_L \ \widetilde{\mu}_R \ \widetilde{ u}_\mu$	(same)	
-eptons	е			bioptonis	0	-	$ \begin{aligned} \overline{\tau}_L \ \overline{\tau}_R \ \overline{\nu}_\tau \\ \end{aligned} $	$ ilde{ au}_1 ilde{ au}_2 ilde{ u}_{ au}$			
Three Generations of Matter				neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$			
						charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}	
						gluino	1/2	-1	\widetilde{g}	(same)	
						goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)	

The Higgs potential in the MSSM

- Three sources for the Higgs potential in the MSSM
 - D-terms from the superpotential
 - F-terms from the superpotential
 - Supersymmetry breaking Lagrangian
- Electroweak symmetry breaking \rightarrow Supersymmetry breaking
- CP- conserving at tree-level, since all phases can be absorbed

$$\begin{split} V_D &= \frac{g_2^2}{8} \Big[4 |H_1^{\dagger} \cdot H_2|^2 - 2 |H_1|^2 |H_2|^2 + (|H_1|^2)^2 + (|H_2|^2)^2 \Big] + \frac{g_1^2}{8} (|H_2|^2 - |H_1|^2)^2 \\ V_F &= \mu^2 (|H_1|^2 + |H_2|^2) \\ V_{\text{soft}} &= m_{H_1}^2 H_1^{\dagger} H_1 + m_{H_2}^2 H_2^{\dagger} H_2 + B \mu (H_2 \cdot H_1 + \text{h.c.}) \end{split}$$

 Two Higgs doublets are required in supersymmetric theories to generate mass for both "up" type and "down" type quarks and charged leptons.

$$H_d = \begin{pmatrix} (v_d + \phi_d^0 + i\chi_d^0)/\sqrt{2} \\ \phi_d^- \end{pmatrix} \quad H_u = \begin{pmatrix} \phi_u^+ \\ (v_u + \phi_u^0 + i\chi_u^0)/\sqrt{2} \end{pmatrix}$$
normalization: $v^2 \equiv v_d^2 + v_u^2 = 4m_W^2/g^2 = (246 \,\text{GeV})^2$

• The mass eigenstates

Neutral sector		Charged sector	
2 CP even Higgs bosons:	h,~H	charged Higgs bosons:	H^{\pm}
1 CP odd Higgs boson:	A	charged Goldstone bosons:	G^{\pm}
1 Goldstone boson:	G^0		

• The two Higgs fields expanded in mass eigenstates

$$\begin{split} H_u &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{2} [H^- \sin\beta - G^- \cos\beta] \\ v_u + [H\cos\alpha - h\sin\alpha] + i [A\sin\beta + G^0 \cos\beta] \end{array} \right) \\ H_d &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} v_d + [H\sin\alpha + h\cos\alpha] + i [A\cos\beta - G^0 \sin\beta] \\ \sqrt{2} [H^+ \cos\beta + G^+ \sin\beta] \end{array} \right) \end{split}$$

The angle beta is the ratio of the two VEVs

$$v_d = v \cos \beta, \qquad v_u = v \sin \beta, \qquad \Rightarrow \frac{v_u}{v_d} = \tan \beta, \quad \beta \epsilon(0, \frac{\pi}{2})$$

• Two additional parameters in the Higgs potential M_{A} ,

• In particular
$$m_{H^{\pm}}^2 = m_A^2 + m_W^2$$

• Masses of h^0 , H^0 are Eigenvalues of the following

$$\mathcal{M}_{h^{0},H^{0}}^{2} = \begin{pmatrix} m_{A^{0}}^{2} \sin^{2}\beta + m_{Z}^{2} \cos^{2}\beta & -(m_{A^{0}}^{2} + m_{Z}^{2}) \sin\beta\cos\beta \\ -(m_{A^{0}}^{2} + m_{Z}^{2}) \sin\beta\cos\beta & m_{A^{0}}^{2} \cos^{2}\beta + m_{Z}^{2} \sin^{2}\beta \end{pmatrix}$$
$$m_{h^{0},H^{0}}^{2} = \frac{1}{2} \left(m_{A^{0}}^{2} + m_{Z}^{2} \mp \sqrt{(m_{A^{0}}^{2} + m_{Z}^{2})^{2} - 4m_{Z}^{2} m_{A^{0}}^{2} \cos^{2}2\beta} \right)$$

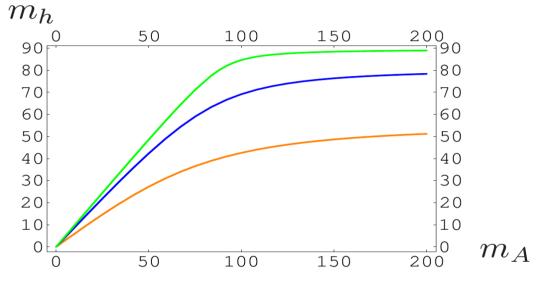
- Alpha is the angle that $\mathrm{diagonal}_{M^0,H^0}^2$. Form the above results one obtains

$$\cos^{2}(\beta - \alpha) = \frac{m_{h^{0}}^{2}(m_{Z}^{2} - m_{h^{0}}^{2})}{m_{A^{0}}^{2}(m_{H^{0}}^{2} - m_{h^{0}}^{2})} \qquad \qquad 0 \le \beta \le \pi/2] -\pi/2 \le \alpha \le 0$$

From the equation for m_{h0} one can derive an upper bound to the light CP even Higgs boson h^0

$$m_{h^0} = \frac{2m_Z^2 m_{A^0}^2 \cos^2 2\beta}{m_{A^0}^2 + m_Z^2 + \sqrt{(m_{A^0}^2 + m_Z^2)^2 - 4m_Z^2 m_{A^0}^2 \cos^2 2\beta}} \le m_Z^2 \cos^2 2\beta$$

 m_{h0} as a function of m_{A0} and $a_n g_n \beta$



 $\tan\beta = 2$, $\tan\beta = 4$, $\tan\beta = 10$

- The SM does not constrain the valu $m^2_{h_{
 m SM}}$ at tree level
- Since $m_{h_{SM}}^2 = 2\lambda v^2$ also the Higgs self-coupling λ is unknown
- In the MSSM the Higgs self-couplings are related to electroweak couplings.

Decoupling limit: $M_A >> M_Z$

mh0 reaches its upper bound value

$$\begin{split} m_{h^0}^2 &\simeq m_Z^2 \cos^2 2\beta \\ m_{H^0}^2 &\simeq m_{A^0}^2 + m_Z^2 \frac{1 - 2\cos^2 2\beta}{2} \\ m_{H^\pm}^2 &= m_{A^0}^2 + m_Z^2 \frac{1 - 2\cos^2 2\beta}{2} \\ \end{split}$$

 Other Higgs bosons become heavy and degenerate in mass

 $m_{A^0} \simeq m_{H^0} \simeq m_{H^\pm}$

Important parameter in Higgs coupling to fermion and vector bosons

Higgs couplings to gauge bosons

$$\begin{aligned} \mathscr{L} &= (\mathcal{D}^{\mu}H_{u})^{\dagger}D_{\mu}H_{u} + (\mathcal{D}^{\mu}H_{d})^{\dagger}D_{\mu}H_{d} \\ &= \frac{1}{2}|\partial_{\mu}\phi_{u}^{0}|^{2} + \frac{1}{2}|\partial_{\mu}\phi_{d}^{0}|^{2} + \left(\frac{g_{Z}^{2}}{8}Z_{\mu}Z^{\mu} + \frac{g^{2}}{4}W_{\mu}^{+}W^{-\mu}\right)\left[(v_{u} + \phi_{u}^{0})^{2} + (v_{d} + \phi_{d}^{0})^{2}\right] \end{aligned}$$

Weak boson masses

$$m_W^2 = \frac{g^2 v^2}{4} \qquad m_Z^2 = \frac{g^2 + g'^2}{4} v^2 = \frac{m_W^2}{\cos^2 \theta_W} \qquad v^2 = v_u^2 + v_d^2$$

• Gauge boson
couplings

$$g_{h^0WW} = g m_W \sin(\beta - \alpha)$$

 $g_{h^0ZZ} = \frac{g}{\cos_{\theta_W}} m_Z \sin(\beta - \alpha)$
 $g_{H^0ZZ} = g m_W \cos(\beta - \alpha)$
 $g_{H^0ZZ} = \frac{g}{\cos_{\theta_W}} m_Z \cos(\beta - \alpha)$

$$\cos(\beta - \alpha) \to 0 \Rightarrow H^0$$
 decouples from W, Z
 $\sin(\beta - \alpha) \to 1 \Rightarrow h^0$ couples like SM Higgs boson

there are no tree level couplings of A^0, H^{\pm} to VV (where V = W, Z)

Higgs couplings to gauge bosons

• Summary of the Higgs couplings to gauge bosons

$\cos(eta-lpha)$	$\sin(\beta - \alpha)$
$H^0W^+W^-$	$h^0W^+W^-$
H^0ZZ	$h^0 Z Z$
ZA^0h^0	ZA^0H^0
$W^{\pm}H^{\mp}h^0$	$W^{\pm}H^{\mp}H^0$
$ZW^{\pm}H^{\mp}h^0$	$ZW^{\pm}H^{\mp}H^0$
$\gamma W^{\pm} H^{\mp} h$	$\gamma W^{\pm} H^{\mp} H^0$

Higgs couplings to fermions

 $-\mathscr{L} = h_t(\bar{t}P_L tH_u^0 - \bar{t}P_L bH_u^+) + h_b(\bar{b}P_L bH_d^0 - \bar{b}P_L tH_u^-) + \text{h.c.}$

$$h_b = \frac{\sqrt{2}m_b}{v_d} = \frac{\sqrt{2}m_b}{v\cos\beta} \qquad h_t = \frac{\sqrt{2}m_t}{v_u} = \frac{\sqrt{2}m_t}{v\sin\beta}$$

Couplings relative to SM values

decoupling limit

$$\begin{split} h^{0}\overline{b}b: & -\frac{\sin\alpha}{\cos\beta} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) & \to 1 \\ h^{0}\overline{t}t: & \frac{\cos\alpha}{\sin\beta} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) & \to 1 \\ H^{0}\overline{b}b: & \frac{\cos\alpha}{\cos\beta} = \cos(\beta - \alpha) + \tan\beta\sin(\beta - \alpha) & \to \tan\beta \\ H^{0}\overline{t}t: & \frac{\sin\alpha}{\sin\beta} = \cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha) & \to -(\tan\beta)^{-1} \\ A^{0}\overline{b}b: & \gamma_{5}\tan\beta \\ A^{0}\overline{t}t: & \gamma_{5}\cot\beta \end{split}$$

 Maximal mass of the CP-even Higgs boson h0 at one-loop level

$$m_h^2 \lesssim m_Z^2 + \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln\left(\frac{M_S^2}{m_t^2}\right) + x_t^2 \left(1 - \frac{x_t^2}{12}\right) \right]$$

$$M_S^2 \equiv \frac{1}{2}(M_{\tilde{t}_1}^2 + M_{\tilde{t}_2}^2)$$
, $x_t \equiv X_t/M_S$

$$X_t \equiv A_t - \mu \cot \beta$$
, $X_b \equiv A_b - \mu \tan \beta$

- m_t^4 dependence
- logarithmic sensitivity to stop quark masses
- dependence of Higgs mass \hat{X}_t , maximal val $\hat{X}_t = \sqrt{6}M_S$

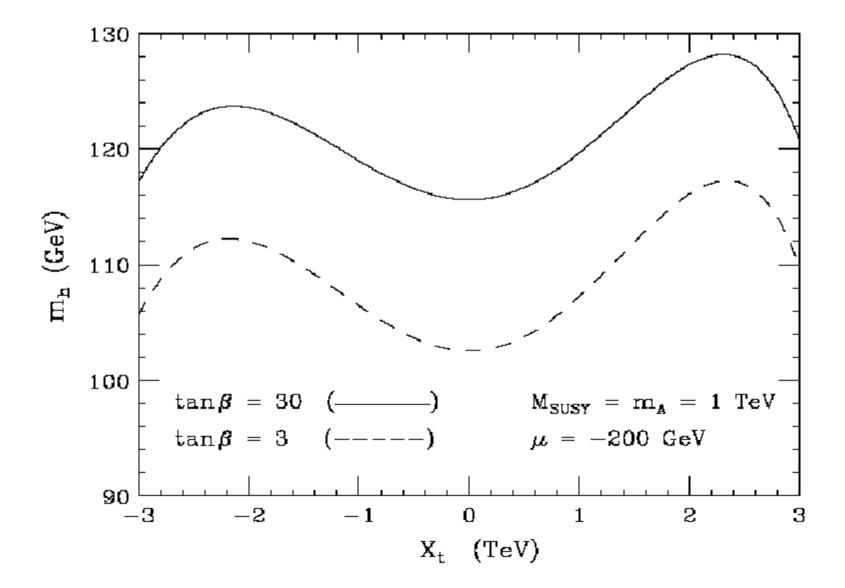
- radiative corrections must be considered since, dominant effects arise from loops involving the 3rd generation quarks and squarks and are proportional to large Yukawa couplings
- Squark mixing matrix in interaction eigenstates

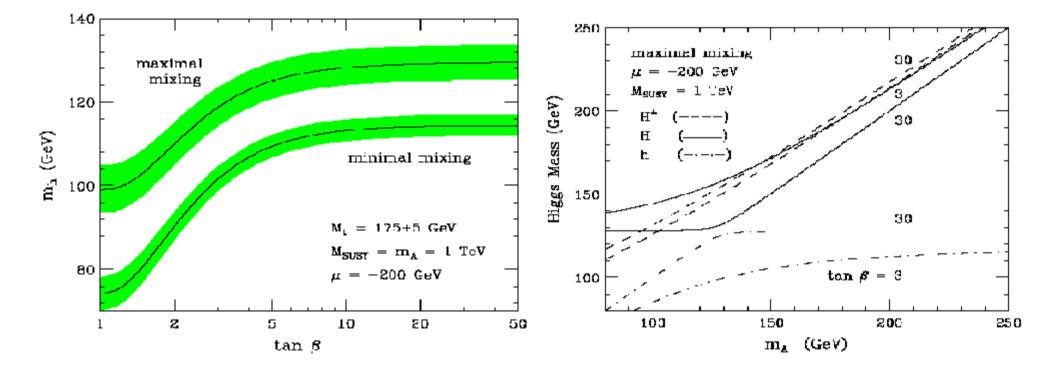
$$\begin{pmatrix} M_Q^2 + m_f^2 + D_L & m_f X_f \\ m_f X_f & M_R^2 + m_f^2 + D_R \end{pmatrix}$$

 $D_L \equiv (T_{3f} - e_f \sin^2 \theta_W) m_Z^2 \cos 2\beta \quad D_R \equiv e_f \sin^2 \theta_W m_Z^2 \cos 2\beta$

- Squark mixing matrix must be diagonalized to describe mass eigenstates \tilde{q}_1, \tilde{q}_2
- Squark mixing paramete $X_t \equiv A_t \mu \cot \beta$, $X_b \equiv A_b \mu \tan \beta$

• Maximal Mixing vs Minimal Mixing X_t dependence



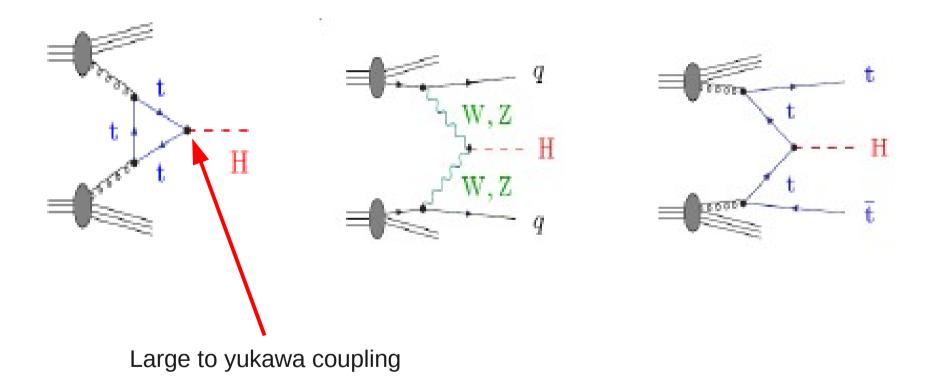


Higgs searches at LEP MSSM Higgs production at $LE_{\sqrt{s}} \simeq 209 \text{ GeV}$ $\sim \cos(eta-lpha)$ $\sim \sin(eta-lpha)$ large m_A : hZ searches low m_A , large $\tan \beta$: hA searches low m_A , low aneta : both channels LEP 88-209 GeV Preliminary LEP 88-209 GeV Preliminary tanß tanβ m_{h°}-max m_{h°}-max M_{SUSV}=1 TeV M_=200 GeV 10 10 u= 200 GeV _{luino}=800 GeV $m_h > 91.0 \text{ GeV} \quad \leftarrow \text{ non observation of hA}$ op mix: X_t=2M_{errev} Excl by $m_A > 91.9 \text{ GeV} \quad \leftarrow \text{ at large } \tan \beta \text{ when}$ Zh is suppressed Excluded 1 by LEP Theoretically Inaccessible 100 120 140 200300 400 80 100 20 40 60 5000 0 $m_{h^{\circ}} (GeV/c^2)$

 $m_{\Delta^{\circ}} (GeV/c^2)$

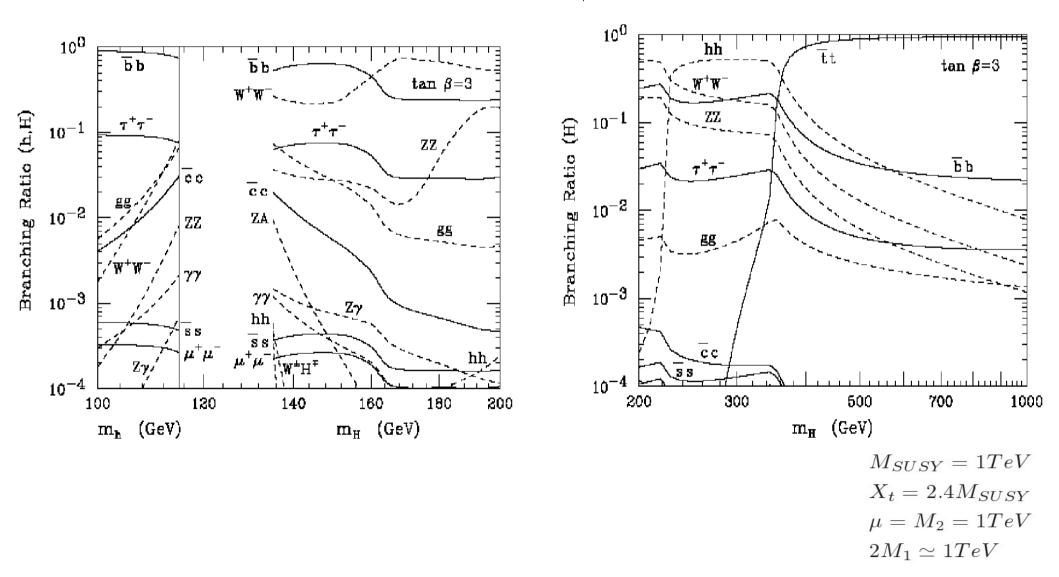
Higgs production at LHC

Gluon fusion
 Vector boson fusion
 Associated production with



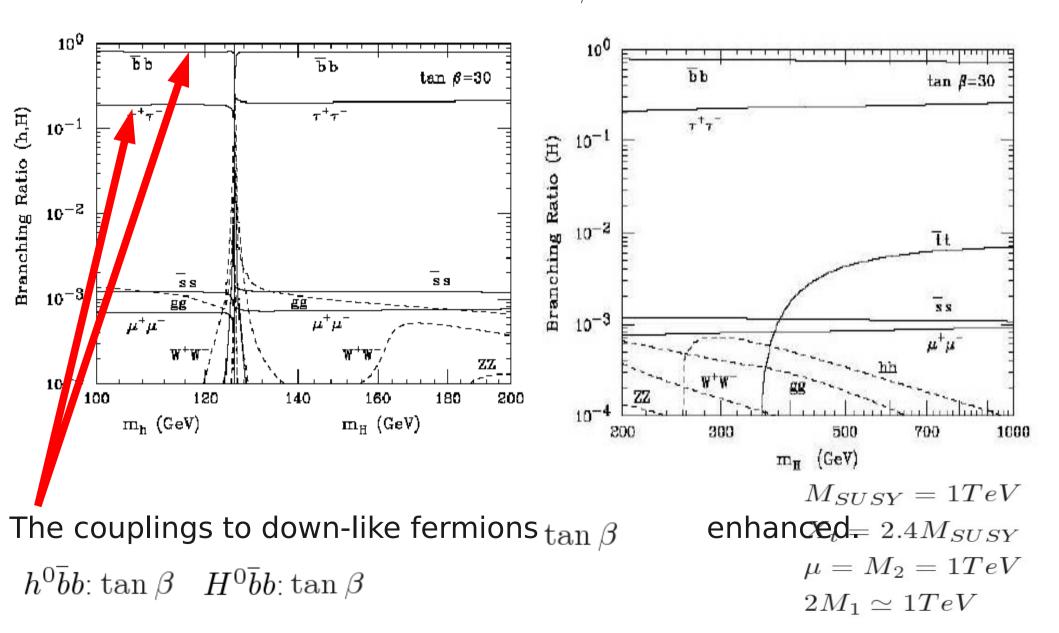
MSSM Higgs branching ratios

Branching ratio of h^0 and H^0 for small₃



Higgs branching ratios

Branching ratio of h^0 and H^0 for large β



Summary

- Two Higgs doublets $\rightarrow h^0, H^0, A^0, H^{\pm}$
- Electroweak symmetry breaking → SUSY breaking
- Upper mass bound for h0 \rightarrow one light Higgs boson $m_{h^0} \leq 135 {\rm GeV}$