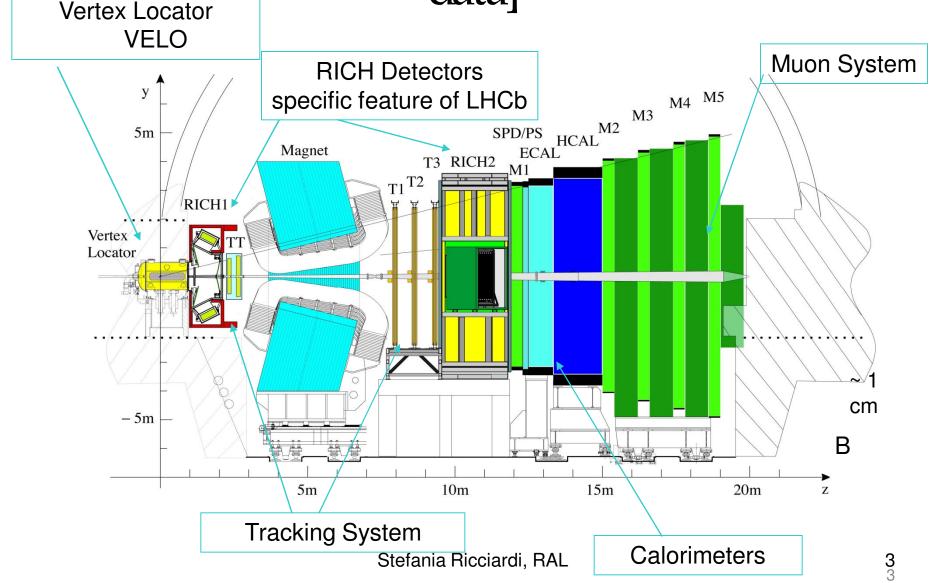
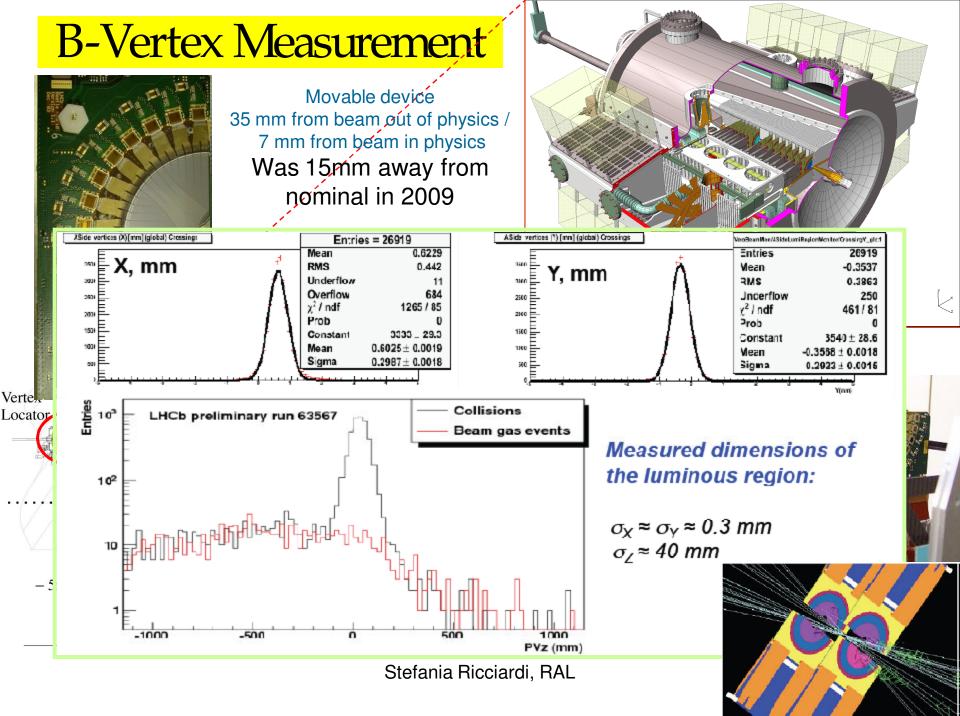
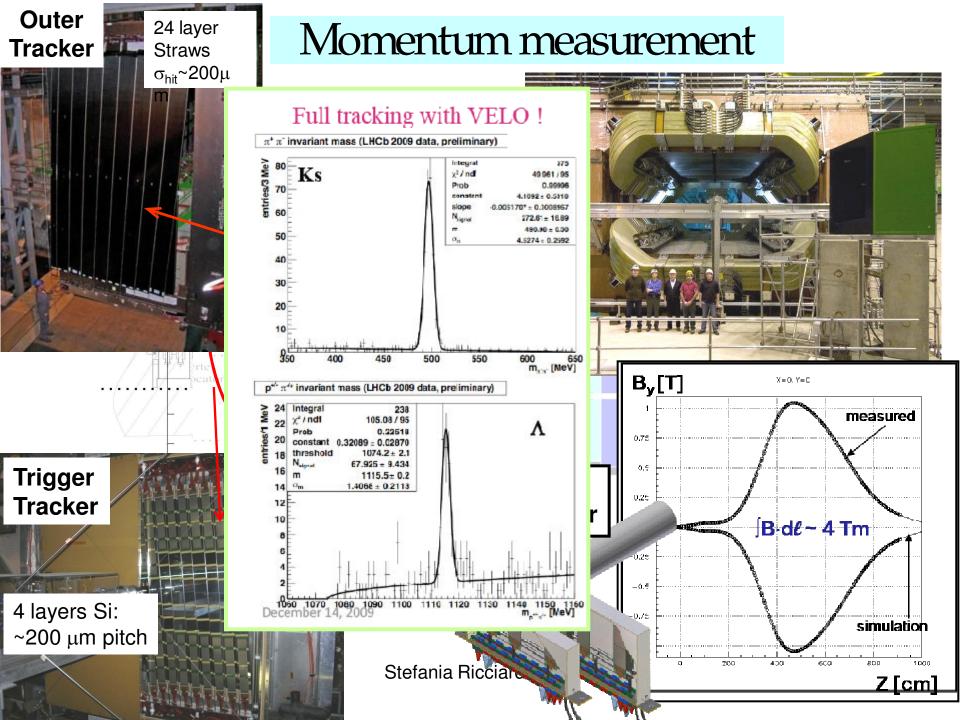

NEXT Meeting on "B and Heavy Flavour Physics" Southampton, January 20th 2010

LHCb highlights and prospects for early physics

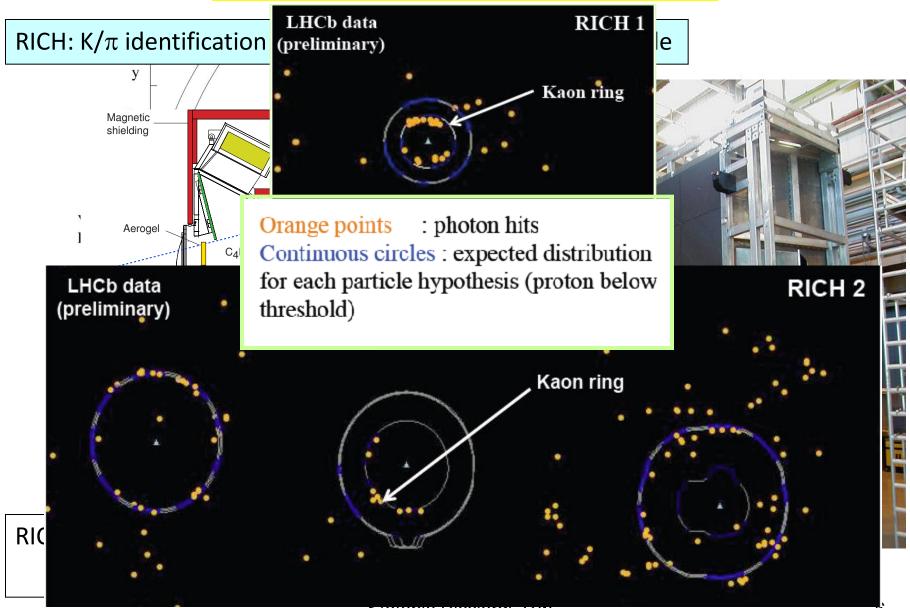
Stefania Ricciardi STFC – Rutherford Appleton Laboratory

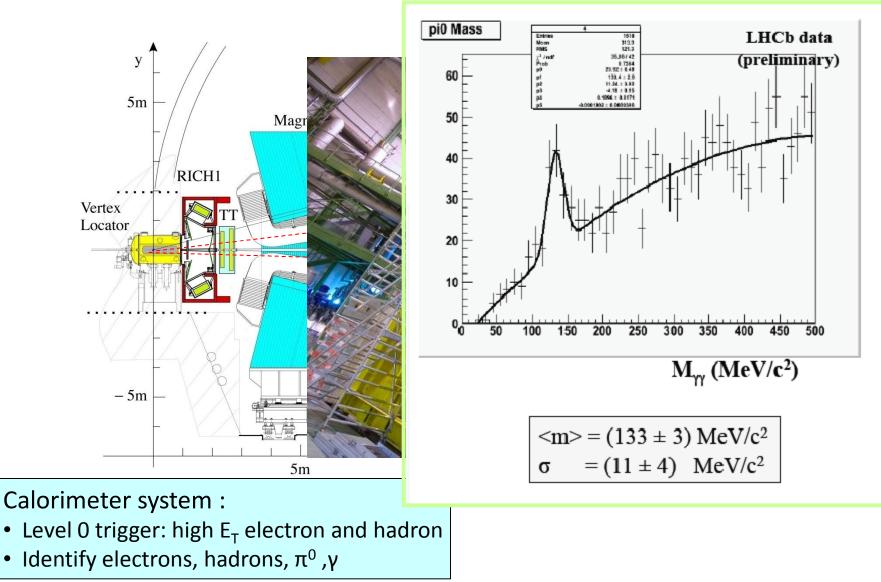



LHCb collision data!

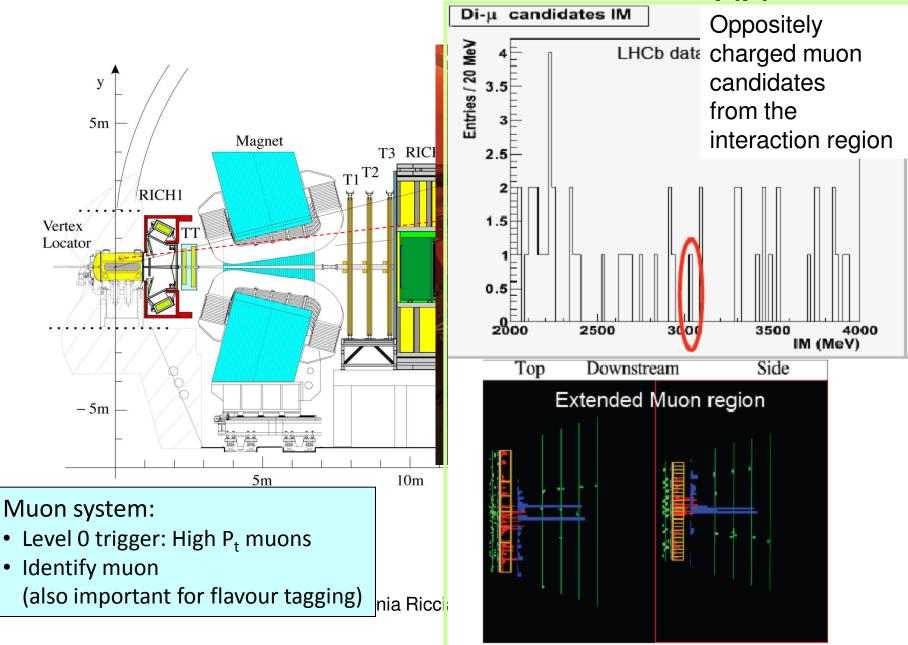


- 1. First data
- 2. Key measurements
- 3. Prospects for early physics


LHCb detector [walk through with 2009 data]

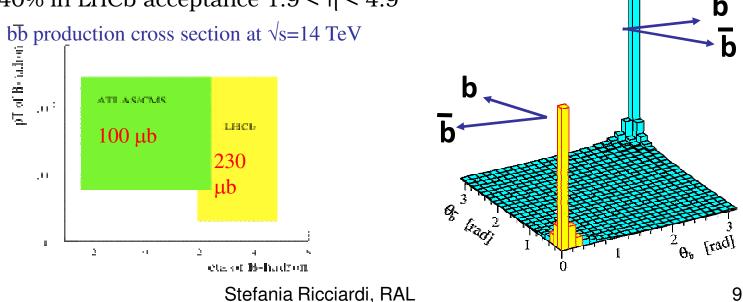


Particle Identification

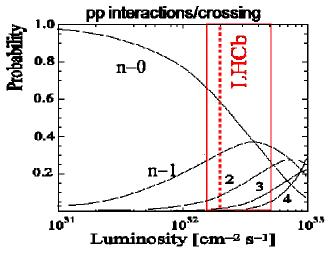


Stelania Ricciarol, RAL

e/h/γ identification and L0 trigger



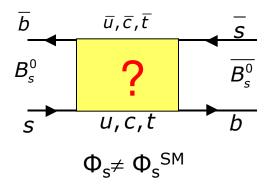
Muon identification and L0 trigger

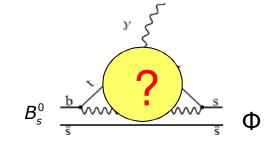

Why a forward spectrometer at LHC?

- Large bb cross section:
 - $\sigma_{bb} \sim 250 500 \ \mu b$ at 7 14 TeV (total bb)
- Access to all b-flavoured hadrons
 - B^+ (40%), B^0 (40%), B_s (10%), b-baryons (10%), B_c (< 0.1%)
- Large acceptance
 - bb production at low angle and correlated in the same hemisphere
 - ~ 40% in LHCb acceptance $1.9 < \eta < 4.9$

LHCb running conditions

- Experimental challenge:
 - high track multiplicity (~50/event) in the forward direction
 - high background rate
 [σ(inelastic)~80mb, i.e. ~160 x
 σ(bb)]
- ⇒ Nominal run: luminosity limited to $\sim 2 \times 10^{32}$ cm⁻² s⁻¹ by not focusing as much as ATLAS and CMS so to limit multiple interactions per bunch crossing
- $\Rightarrow \text{Start-up: LHCb can exploit all} \\ \text{available luminosity in the start-} \\ \text{up phase. Similar integrated } L \\ \text{as ATLAS and CMS in 2010} \\ \end{cases}$




Nominal Year: 2 fb⁻¹ (10⁷s, 14 TeV) 10¹² bb pairs/year

Startup phase: 0.2-0.5 fb⁻¹ (2010 run, 7-10 TeV) 0.5-2 x 10¹¹ bb pairs

Why physics in the *b* sector?

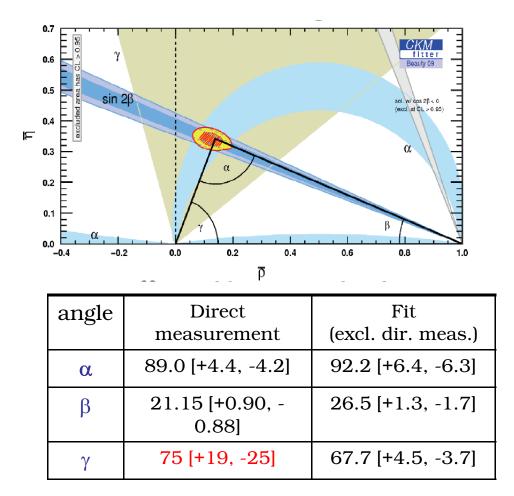
- Privileged path towards New Physics discovery and characterisation
 - If new virtual particles contribute to loop processes ⇒ Observe:
 - Changes in CP-asymmetries (new amplitude phases)
 - Changes in decay rates (new amplitude magnitude)
 - Changes in angular distributions (new Lorentz structure)

Still large discovery potential with Bintriguing hints from B-factories and

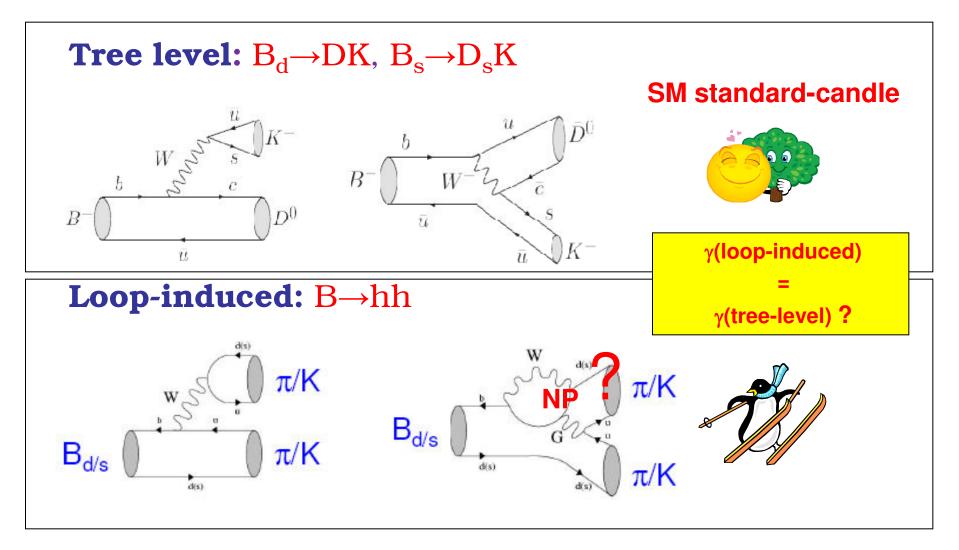
Tevatron measurements demand

 Complementary to direct search of new real particles, which may be produced and observed at ATLAS, CMS

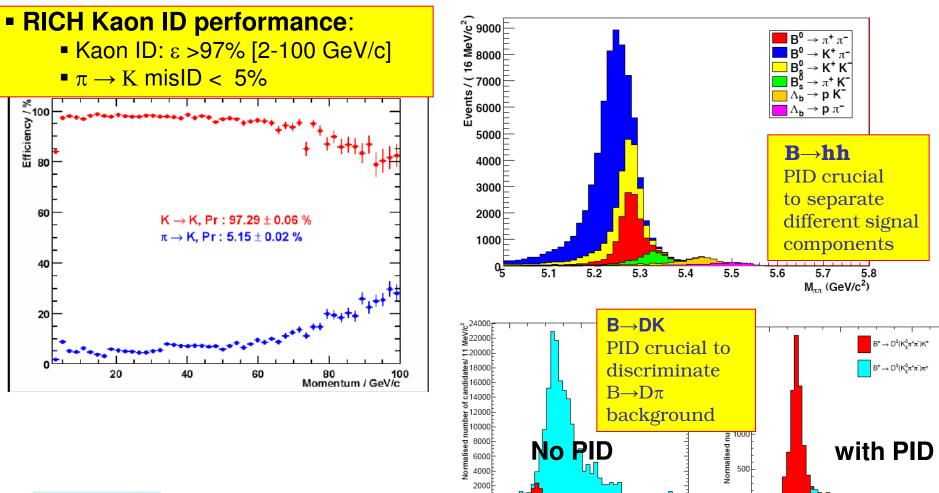
⇒ larger B data samples, on the experimental side ⇒ precise predictions on the theoretical side


Joy of B physics: many clean observables sensitive to NP!

Stefania Ricciardi, RAL

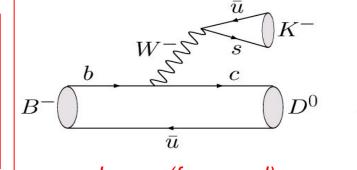

LHCb Physics Highlights Now on ArXiV:0912.4179 379 pp. LHCb-PUB-2009-029 17 December 2009 Roadmap for selected key measurements of LHCb The LHCb Collaboration¹ Search for new CPV Search for New Physics in rare decays phases CKM angle γ • $B_s \rightarrow \mu\mu$ $\Phi_{\rm s}$ from $B_{\rm s} \rightarrow J/\psi \phi$ • $B_d \rightarrow K^* \mu \mu$ $B_s \rightarrow \phi \gamma$

First key measurement: γ


- Flagship measurement for LHCb
- B-factories have set first important constraints much beyond design
 - thanks also to development of new measurement methods (good example of interplay of theory and experiment)
- Still, as of 2010, least constrained UT angle from direct measurements
- Tree-level determination: clean SM reference
 - required to unravel subtle NP effects and disentangle between different models

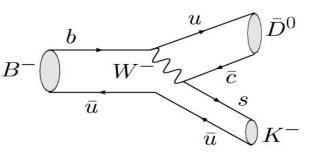
γ from trees and loops

Particle identification crucial for γ measurements


Stefania Ricciardi, RAL

Reconstructed B[±] mass [MeV/c²]

Reconstructed B[±] mass [MeV/c²]


Tree-level γ determination with $B \rightarrow DK$

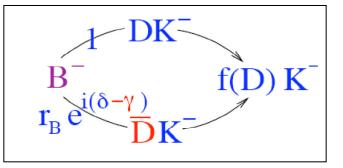
 $B \rightarrow DK$ rates sensitive to γ through interference of b \rightarrow c and b \rightarrow u transitions

 $b \rightarrow c$ (favoured)

 $b \rightarrow u$ (suppressed)

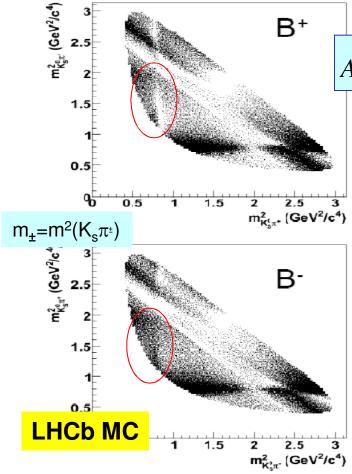
Interference if D^0 and $\overline{D^0}$ decay to common final state **f**

Several strategies to extract γ: GLW : f =CP eigenstate


Gronau & London, PLB 253, 483 (1991); Gronau & Wyler, PLB 265, 172 (1991)

ADS: f =Flavour state

Atwood, Dunietz, & Soni, PRL 78, 3257 (1997), Atwood, Dunietz, & Soni, PRD 63, 036005 (2001)


GGSZ: f =3-body decays

Giri, Grossman, Soffer, & Zupan, PRD 68, 054018 (2003), Bondar, PRD 70, 072003 (2004)

$B^+ \rightarrow D(K_S \pi^+ \pi^-)K^+$ measurement principle [GGSZ]

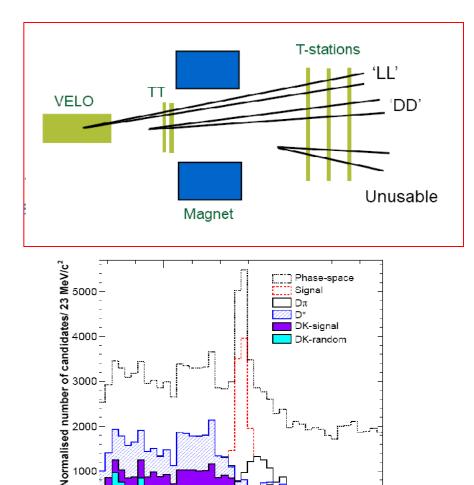
- Dalitz Measurement current best constraint on γ from B-factories
- exploits different interference pattern in the two $D \rightarrow K_S \pi \pi$ Dalitz plots (from *B*+ and *B* decays)

$$A(B^{\pm} \to D(K_S \pi \pi) K^{\pm}) \propto f(m_{\mp}, m_{\pm}) + r_B e^{i(\delta_B \pm \gamma)} f(m_{\mp}, m_{\pm})$$

Two approaches to extract γ :

• Unbinned fit, using model for D decay amplitude;

⇒systematic error from model dependence ~7°


• Binned method – bins of δ_D phase (using input from **CLEO-c**);

 \Rightarrow induced systematic uncertainty ~2° (due to CLEO-c statistics, no model dependence)

əfania Ricciardi, RAL

$B^+ \rightarrow D(K_S \pi^+ \pi^-)K^+$ Selection and Yields

- Specific for this decay: K_s challenge
 - 2/3 decay downstream (DD) of vertex detector (but have hits in downstream tracker stations)
- Overall efficiency ~ 0.1 % including Level-0 trigger
- Signal Yields for 2 fb⁻¹
 - 7k with B/S < 1.5 @90%CL
- Compared with B-factories:
 - BaBar (351/fb) 610 events
 - Belle (602/fb) 756 events

5000

Stefania Ricciardi,

5500

γ (tree-level) sensitivity summary

Channel	Analysis method	σ(γ)(°) (2/fb)	
$\mathbf{B} \stackrel{\pm}{\to} \mathbf{D}^{0}(\mathbf{K}\pi)\mathbf{K}^{\pm}$ fav	2-body ADS		
B [±] →D ⁰ (hh)K [±]	2-body GLW	11	
$\mathbf{B} \stackrel{\pm}{\to} \mathbf{D}^{0}(\mathbf{K}3\pi)\mathbf{K}^{\pm}$ fav	4-body ADS	Improves the above	
$\mathbf{B} \ ^{0} \rightarrow \mathbf{D}^{0}(\mathbf{K}\pi)\mathbf{K}^{*0} \mathbf{fav}$	BO ADS	15-25	
B ⁰ → D ⁰ (hh)K ^{*0}	BO GLW		
$\mathbf{B} \pm \rightarrow \mathbf{D}^{0}(\mathbf{K}_{\mathbf{S}}\pi\pi)\mathbf{K}^{\pm}$	GGSZ	12.5	
$\mathbf{B_s} \rightarrow \mathbf{D_s}^{\mp} \mathbf{K}^{\pm}$	TD	9-12	
$\mathbf{B}_{\mathbf{d}} \rightarrow \mathbf{D}^{\mp} \pi^{\pm}$	TD	≥22	

No mode is dominant
 Optimal sensitivity via a global fit, where γ and other parameters common to several BDK modes are simultaneously extracted

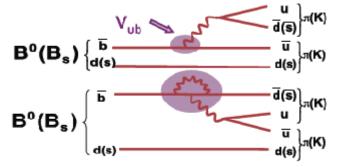
Luminosity (fb ⁻¹)	σ(γ) (°)
0.5	8-10
2	4-5
10	<mark>2-3</mark>

Time integrated

Time dependent

Stefania Ricciardi, RAL

The B—hh measurement of γ


Time-dependent asymmetries for $B_d \rightarrow \pi \pi$ and $B_s \rightarrow KK$ to determine A_{dir} and A_{mix}

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- A_{dir} and A_{mix} depend on:
 γ
 Mixing phases Φ_d or Φ_s
 Penguin/Tree = de^{iθ}
- $\Phi_{\rm d}$ from J/ ψ K_S
- U-spin simmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- 4 observables, 3 unknowns: solve for γ

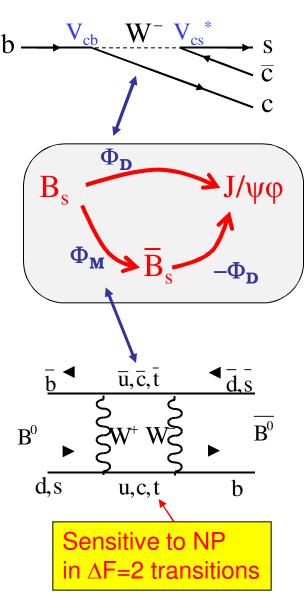
 $\sigma(\gamma) = 7^{\circ}$ with 2 fb⁻¹

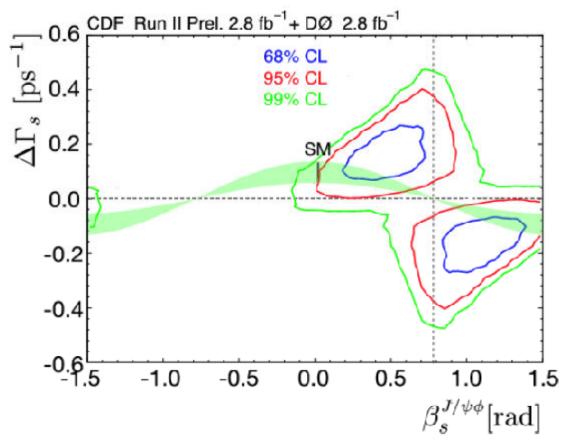
Including U-spin symmetry breaking effects at 20% level on d, +/-20 degrees on θ

Mode	Sig. yield (untagged) (/2fb ⁻¹)	
$B^0 \rightarrow \pi \pi$	36k	0.5
$B_s \rightarrow KK$	36k	0.15
$B^0\toK\pi$	140k	< 0.06
$B_s \rightarrow \pi K$	10k	1.9

0.5 fb⁻¹ gives world largest $B \rightarrow hh$ sample

- BF and charge asymmetry results
- First observation of timedependent asymmetries in Bs→KK


- Time-dependent CPV measurement equivalent to $B_d \to J/\psi K^0{}_S$
 - "golden" mode for B_s mixing-induced CP violation
 - Measures $\Phi_{\rm S} = \Phi_{\rm M} 2\Phi_{\rm D}$
 - $\Phi_s^{SM} = -2 \beta_s = (0.037 \pm 0.002)$ rad (from CKM fits)
 - Precise SM prediction \Rightarrow a significant non-zero value of Φ_{s} is New Physics (sb) $(e^{\lambda^{2}}) \rightarrow \mathbb{R}^{2}$


Specific challenges:

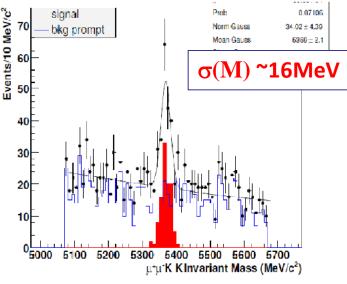
- Fast B_s oscillations ($\Delta m_s >> \Delta m_d$)
 - need excellent proper time resolution to avoid dilution
 - Can't be done at B-factories
- Additional physics parameters
 - Non vanishing $\Delta\Gamma_s$ to fit for $(\Delta\Gamma_s >> \Delta\Gamma_d)$;
 - Mixture of CP-even (S and D waves) and CP-odd (P wave) eigenstates
 - \Rightarrow need angular analysis to separate the two components

Stefania Ricciardi, RAL

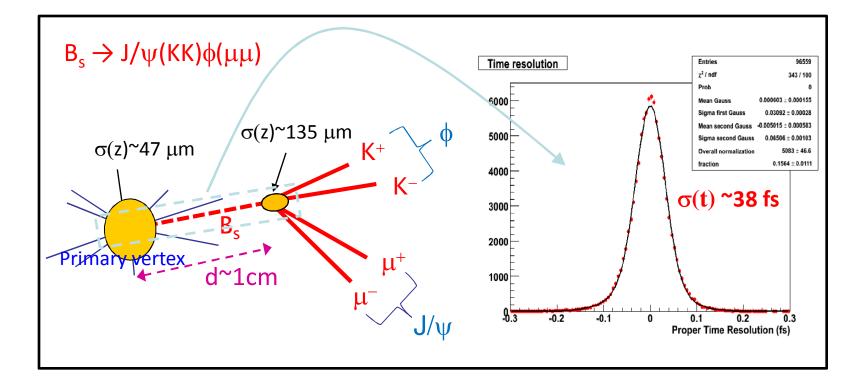
Combined CDF+D0 result

- Large central values measured by both CDF and D0
- Combined result on β_s is within [0.10,1.42] at 95% C.L., 2.3 σ from SM
- Intriguing CDF and D0 deviations from SM in the same direction
- Eagerly awaiting for an update on larger data-samples

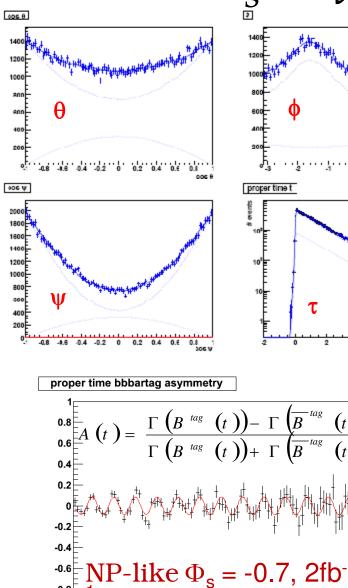
Stefania Ricciardi, RAL


$B_s \rightarrow J/\psi \phi$: key ingredients

Sensitivity depends on

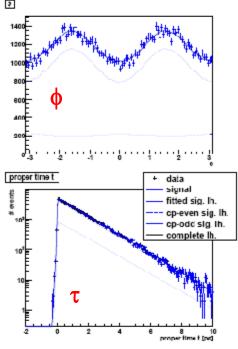

- signal yield and background level
 - Large signal yield with low background
 - Largest background from prompt J/ψ harmless in β_s fit
- reconstruction quality of input variables, particularly proper time, angles, flavour tagging
- Calibration and validation on large control samples
 - $B_d \rightarrow J/\psi K^*$ to check angular acceptance
 - $B^+ \rightarrow J/\psi K^+$ to calibrate opposite side tagging
 - B_s→D_sπ to validate proper time and same-side tagging

Signal yield (2 fb ⁻¹)	11 7 k
B(long-lived) /S	0.5
B(prompt J/ψ)/S	1.6



Most crucial: proper time resolution

Average $\sigma(t) \approx 38$ fs, compared with oscillation period T = $2\pi/\Delta m_s \approx 314$ fs for $\Delta m_s = 20$ ps⁻¹


$B_{s} \rightarrow J/\psi \phi$: sensitivity

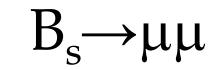
2

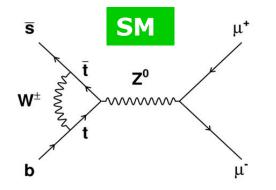
-0.6

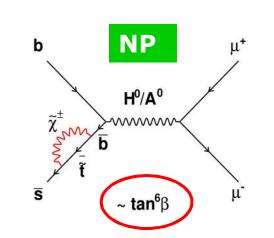
-0.8

(t)

•Sensitivity studies with 2fb⁻¹: $\sigma(\Phi_s)$ ~0.03 for SM value

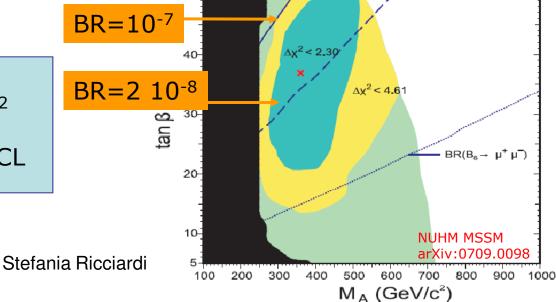

 Good convergence for all physics parameters, all detector parameters can also be fitted


Parameter	Result	Units
$m_{ m B_s}$	$h_{\rm B_s} = 5368.01 \pm 0.05$	
$f_{m,1}^{\mathrm{s}}$	0.47 ± 0.13	
$\sigma_{m,1}^{s}$	12.0 ± 0.7	MeV/c^2
$\sigma_{m,2}^{\mathrm{s}}$	19.0 ± 1.3	MeV/c^2
$ A_0(0) ^2$	0.599 ± 0.002	
$ A_{\perp}(0) ^2$	0.162 ± 0.004	
δ_{\parallel}	2.49 ± 0.02	rad
δ_{\perp}	-0.28 ± 0.10	rad
$-2\beta_{ m s}$	-0.0399 ± 0.0272	rad
Γ_{s}	0.686 ± 0.004	$\rm ps^{-1}$
$\Delta\Gamma_{\rm s}$	0.061 ± 0.010	ps^{-1}
$f_{t,1}^{\mathrm{s}}$	0.96 ± 0.01	
$\sigma_{t,1}^{s}$	0.032 ± 0.001	\mathbf{ps}
$\sigma_{t,2}^{\mathrm{s}}$	0.12 ± 0.01	\mathbf{ps}
$\Delta m_{ m s}$	19.96 ± 0.04	\mathbf{ps}


ι Ricciardi, RAL

Sensitivity versus integrated luminosity

Branching fraction can be modified in a variety of NP models


Example: strongly enhanced in MSSM with scalar Higgs exchange for large tanβ

 $BR^{SM} = (3.35 \pm 0.32).10^{-9}$ FCNC – Helicity suppressed Precise SM prediction

> CDF upper limit (2 fb⁻¹) : CDF, Phys. Lett. 100(2008) 101802

BR < 47 10^{-9} @ 90% CL

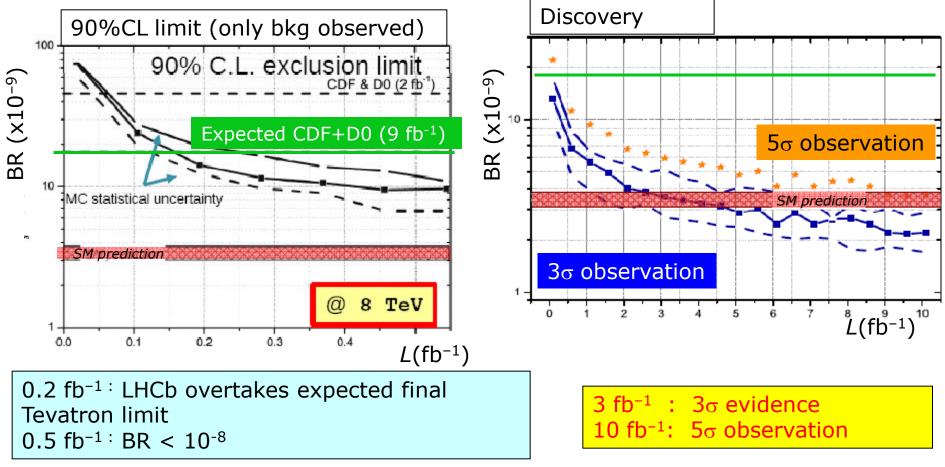
Example of New Physics scenario

$B_s \rightarrow \mu \mu$ analysis

- Decay easy to trigger and reconstruct at LHC
- Main experimental challenge is background rejection
 - largest background is $b \rightarrow \mu$, $b \rightarrow \mu$
 - also specific backgrounds such as $B \rightarrow hh$
- Selection:
 - loose event selection
 - analysis in bins of 3D space (mass, muonID, geometry)
- Event yields per fb⁻¹:

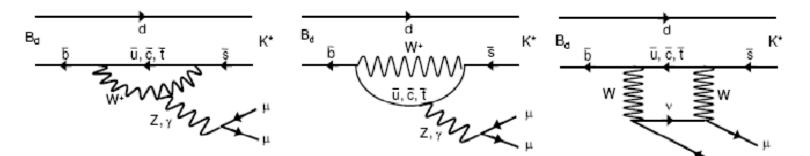
	ATLAS	CMS	LHCb ²	
SM signal ¹	5.7	2.4	3.8	
background	14^{+13}_{-10}	6.5 ±2.4	11 ⁺¹⁵ _7	

¹ Slightly different assumptions across experiments
 ² Most sensitive bin only


- Branching fraction normalisation
 - •through $B_d \rightarrow hh$ and $B^+ \rightarrow J/\psi K^+$
 - no need of absolute luminosity, cross-section, efficiencies
 - 14% systematic due to mainly f(B_s)/f(B_d)

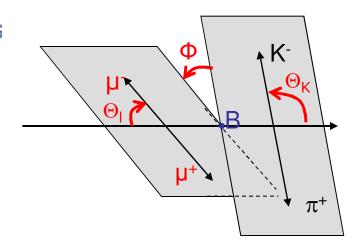
$\rightarrow 11$			
,	ATLAS	CMS	LHCb
σ _{mass} [MeV/c ²]	90	53	22
ma	Excellent mass resolution at LHCb is the key for background		

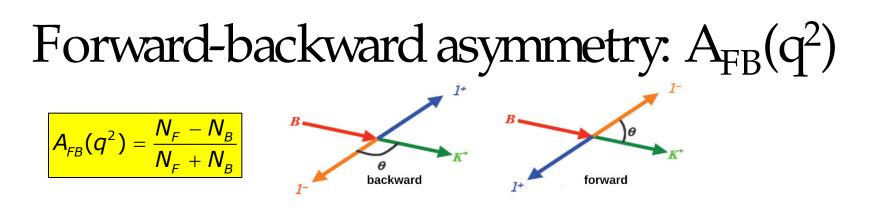
rejection


$B_s \rightarrow \mu^+ \mu^-$ reach

- First 5 years: statistics dominated
- Atlas and CMS: similar performance with 5 times more luminosity

 $B_d \rightarrow K^* \mu \mu$

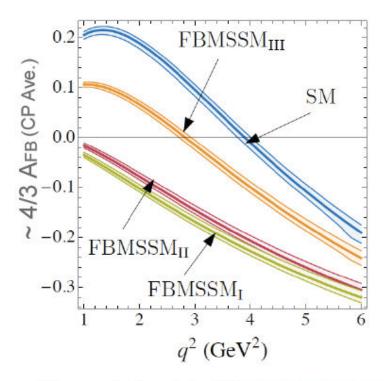

FCNC b \rightarrow s transition



• First observed by Belle

 $Br(B_d \to K^{*0} \mu^+ \mu^-) = (1.22^{+0.38}_{-0.32}) \times 10^{-6}$

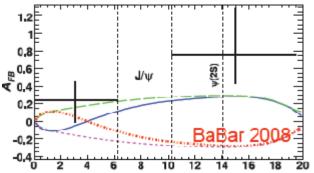
•Decay described by Θ_l , Φ , Θ_K and $q^2 \equiv m_{\mu\mu}^2$ \Rightarrow Several angular observables can be built •Crucial: identify observables with low theory errors [*See R.Zwicly talk*] •Differential cross sections as a function of $m_{\mu\mu}^2$ first one to be studied Stefania Ricciardi, RAL



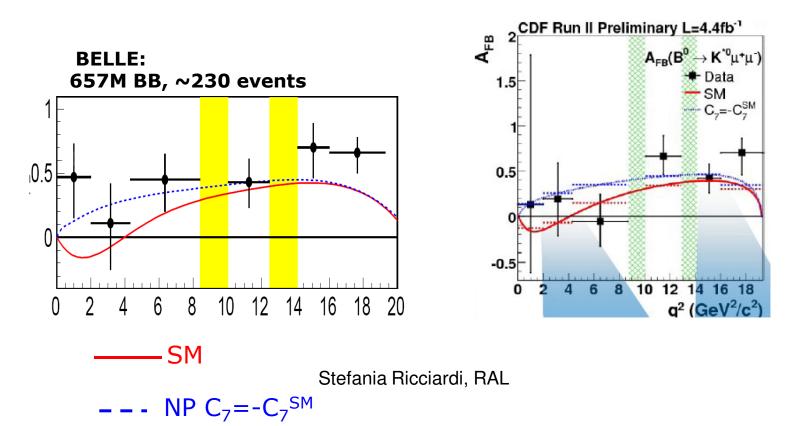
- Large deviations from SM with plausible New Physics
- zero-crossing point s₀ precisely predicted in the SM [A_{FB}(s₀)=0]:

 $S_0^{SM} = 4.36 {}_{-0.31}^{+0.33} {}_{-0.31}^{+0.33} {}_{-0.31}^{+0.33}$

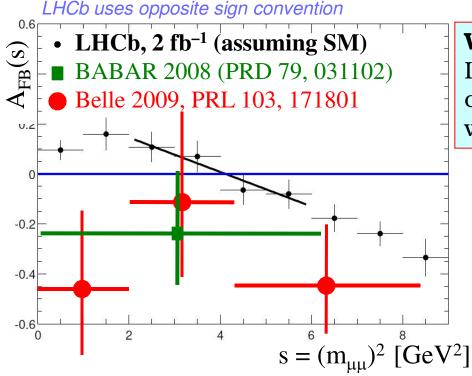
• Accessible with (0.5 fb⁻¹)


 \Rightarrow first goal for LHCb

Altmannshofer et al, JHEP 0901:019,2009


$A_{FB}(q^2)$ Current Status

3 recent interesting results: Belle PRL 103:171801 (2009). BaBar PRD 79:031102 (2009) CDF preliminary (HCP 2009)


32

All 3 see sign of A_{FB} for low=q² opposite to SM

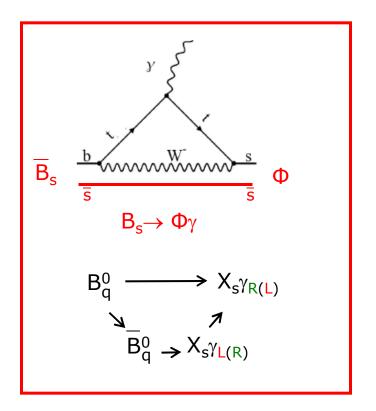
$B_d \rightarrow K^* \mu \mu$: LHCb sensitivity to A_{FB}

• 6.2k signal events/2fb⁻¹, $B_{bb}/S \sim 0.25$

 With 2 fb⁻¹, the zero of A_{FB}(s) can be measured to ±0.5 GeV² (~11% of SM value)

Stefania Ricciardi, RAL

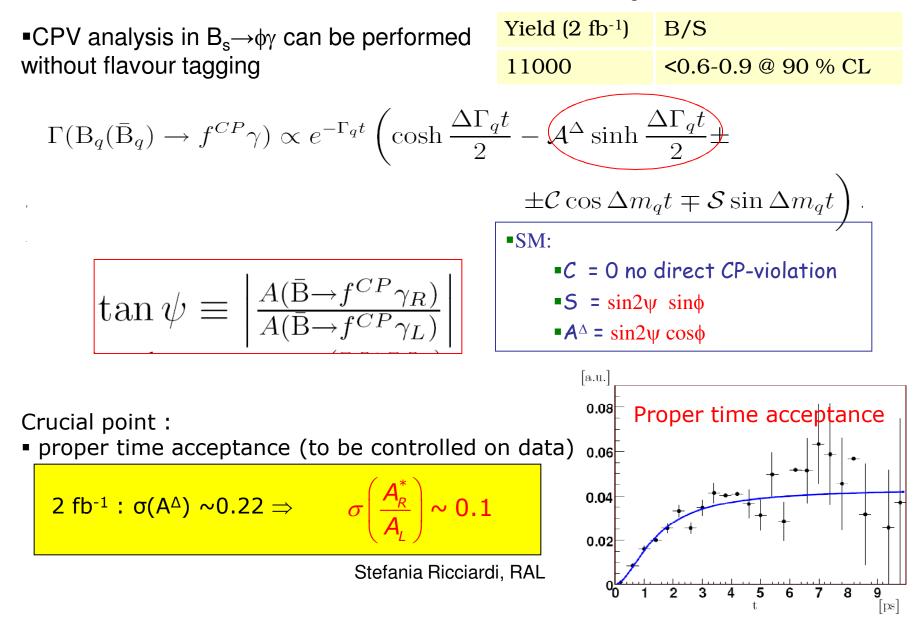
33


With ~200 pb⁻¹ in 2010 LHCb will accumulate ~300 events could confirm tendency of A_{FB} with similar sensitivity to B-factories

Crucial: understand angular acceptance (detector and reconstruction) and background

Extensive studies with suitable control samples: in particular, $B_d \! \to \! J/\psi \; K^{*0}$

R^c-


- Measurement of photon polarisation
- Photon polarisation is correlated with B-flavour ⇒ no interference and therefore no CP asymmetry within SM (suppressed by ~ms/mb)
- Non-zero asymmetry reveals presence of RH currents in penguin
- BaBar & Belle performed CPV analysis for $B_d \rightarrow K^*(K^0\pi^0)\gamma$ decay
 - $\sigma (A(B \rightarrow f^{CP}\gamma_R) / A(B \rightarrow f^{CP}\gamma_L)) \sim 0.16$

Essentially we study *CP*-violation in $B_s \rightarrow \phi \gamma$ as *an instrument* to probe Lorentz structure of $b \rightarrow s \gamma$ transitions F.Muheim, Y.Xie & R.Zwicky, Phys.Lett.B664:174-179,2008

Stefania Ricciardi, RAL

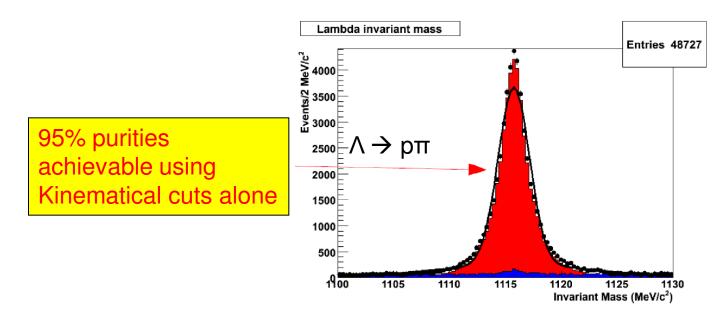
 $B_{s} \rightarrow \phi \gamma$ Sensitivity

Prospects for early physics

Beyond the B

(some examples)

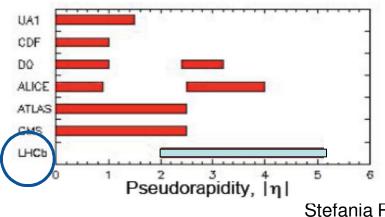
Day 1 Measurements: Minimum Bias

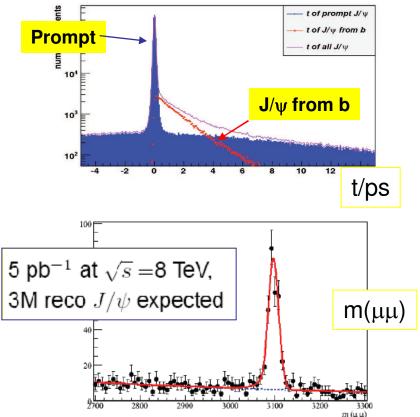

As soon as stable collision mode at \sqrt{s} >4TeV record:

10⁸ mbias events
 O(day) @ 2kHZ

Large number of reconstructed K_s , Λ , ϕ for:

- Detector calibration
- Trigger studies
- Early physics, in particular QCD


 inclusive studies of strangeness production



1-5 pb⁻¹: J/ψ production

$$t=rac{dz}{p_z^{J/\psi}}m^{J/\psi}$$
 separates:

- prompt J/ψ
 Proper time calibration
 - cross-section/polarisation
- secondary J/ψ : $pp \rightarrow X+bb \ (b/b \rightarrow J/\psi + X)$ • bb cross-section

 Unique LHCb coverage in regions not accessible to other collider expts, where theoretical predictions are less accurate

20 pb⁻¹ and upward : charm physics

- Very high statistics for charm physics at LHCb
 - σ(cc)~7x σ(bb)
 - Example: D* tagged trigger provides 42k D⁰→KK events per pb⁻¹ [⇒ 10 pb⁻¹ LHCb data sample ≥ total B-factory]

Unprecedented sensitivity even with first data

- D⁰ mixing and CPV (CPV observation would be clear NP!)
- Two body lifetime ratio measurement

$$y_{CP} = \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to (K^- K^+, \pi^- \pi^+))} - 1$$
$$= y \quad \text{(Assuming no CP violation)}$$

σ(y _{CP}) ~1.1 x10⁻³ with 100pb⁻¹ [SM<10⁻³]

Belle: $\sigma(y_{CP}) = 3 \times 10^{-3}$

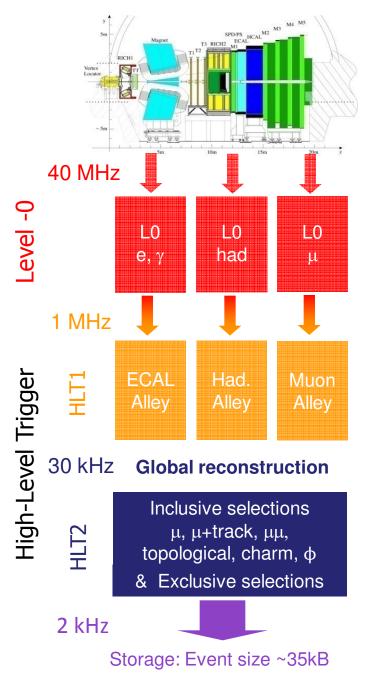
- Direct CP violation in singly Cabibbo-suppressed charm decays (D^0 \rightarrow KK , D^+ \rightarrow KK\pi)

Summary and conclusions

- **LHCb 2009 :** Highly successful first data-taking period
 - O(300k) events at 900 GeV
 - Used to commission and calibrate the detector
- **LHCb 2010:** expect first results for several key-measurements in the B sector. Mentioned here just a narrow selection of promising channels:

NP discovery in 2010 if

 Φ_s @ Tevatron central value!


- γ from B \rightarrow DK
- γ from $B \rightarrow hh$
- $\phi_s \text{ from } B_s \rightarrow J/\psi \phi$
- $B_s \rightarrow \mu \mu$
- $B_d \rightarrow K^* \mu \mu$
- $B_s \rightarrow \phi \gamma$

In addition, rich program of physics Beyond the B with early data Watch for beauty and charm results at next Summer Conferences!

LHCb-upgrade physics reach

	Measurement	Current precision	LIICb (10 fb ⁻¹)	LHCb upgrade (100 fb ⁻¹)	Irreducible theory error	Competition
E/W Penguins	$s_{0}\Lambda_{H\!B}\left(K^{*}\mu\mu\right)$	Unmeasured	4%	1%	7%	None
	$A_{T}{}^{(2)}\left(K^{*}\mu\mu\right)$	Unmeasured	0.10	0.03	0.05	None
Right-handed currents	$S(B_s \rightarrow \psi \gamma)$	Unmeasured	0.05	0.01	< 0.01	None
	$A^{\Delta\Gamma}\left(B_{s}{\rightarrow}\varphi\gamma\right)$	Unmeasured	0.10	0.02	0.02	None
Higgs penguins	$B(B_d \to \mu \mu) / B(B_d \to \mu \mu)$	Unmeasured	Unmeasured	~20%	~5%	ATLAS, CMS
Gluonic penguins	$\beta_s^{N^p}(B_s \to K^{o^*}K^{o^*})$	Unmeasured	5°	1º	<1°	None
	$\beta_s{}^{NP}\!(B_s\!\!\rightarrow\!\!\varphi\varphi)$	Unmeasured	5°	1º	~1°	None
	$\beta^{NP}(B_d \rightarrow \phi K_S)$	8°	8°	2°	~1°	SFF
SM bench-marks	γ (B \rightarrow DK)	~25°	~2°	<1°	Negligible	None
	$\beta \left(B_{d} {\rightarrow} J / \psi K_{S} \right)$	l°	0.2°	<0.1°	~0.1°	None
	$\beta \left(B_{d} \rightarrow D\pi^{*}\pi^{-} \right)$	Unmeasured	10	0.2	Negligible	None
NP in Bs mixing	$\beta_s \left(B_s {\rightarrow} J/\psi \; \phi \right)$	20°	0.3°	≤ 0.1 °	~0.1°	None
CPV in charm	$A_{\Gamma}(D \rightarrow KK)$	25×10-4	3×10≁	0.7×10-4	~10-4	None

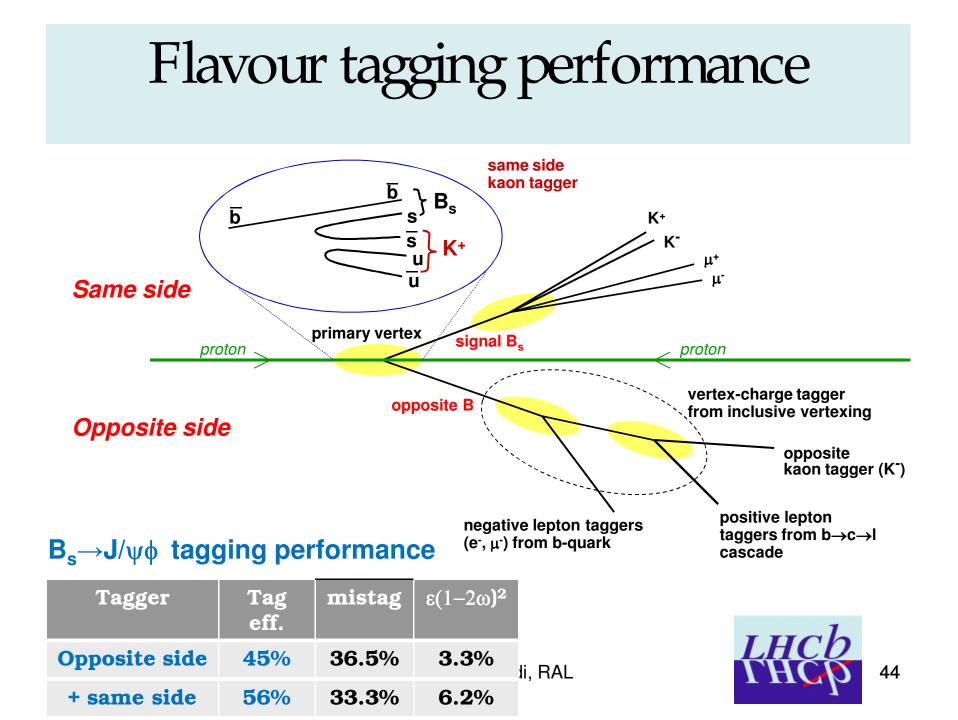
Trigger

Trigger is crucial:

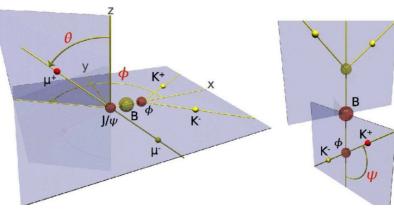
> σ_{bb}-is less than 1% of total inelastic cross section
 > B decays of interest typically have BR < 10⁻⁵

Hardware level (LO)

Search for high- p_T μ , e, γ and hadron candidates


Software level (High Level Trigger, HLT)

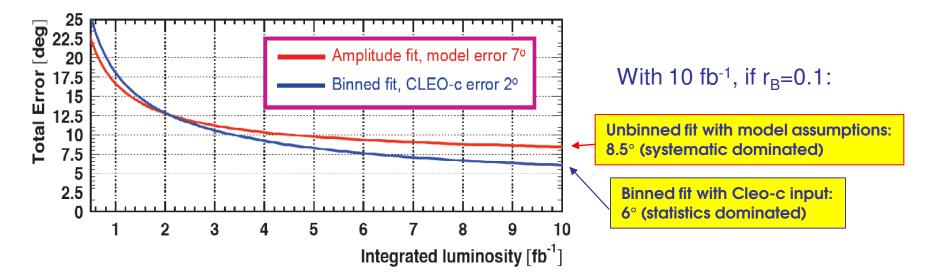
Farm with O(2000) multi-core processors


> HLT1: Confirm L0 candidate with more complete info, add impact parameter and lifetime cuts

> HLT2: B reconstruction + selections

Trigger efficiency	ε(LO)	ε(HLT1)	ε(HLT2)	
Electromagnetic	70 %			
Hadronic	50 %	> ~ 80 %	> ~90 %	
Muon	90 %			

$B_s \! \rightarrow \! J/\psi \, \phi$ time-dependent angular fit


P→VV decay : mixture of CP-even (ℓ =0,2) and CP odd (ℓ =1) final states. An angular analysis allows to separate statistically the decay amplitudes.

3 angles $\Omega = (\theta, \phi, \psi)$ to describe the final decay products directions.

- Physics parameters extraction via unbinned maximum likelihood fit
- Input
 - **angles** $\Omega = (\theta, \phi, \psi)$: to separate different CP eigenstates
 - B_s invariant mass: to separate signal and background
 - B **flavour tag**: pin down initial state of the decay
 - **proper decay time**: to extract Φ_s from the time-dependent asymmetry
- Output
 - 8 physics parameters Φ_{S} , Γ_{s} , $\Delta\Gamma_{s}$, Δm_{s} , R_{\perp} , R_{\parallel} , δ_{\perp} , δ_{\parallel}
 - various detector parameters

$B^+ \rightarrow D(K_S \pi^+ \pi^-)K^+$ sensitivity to γ

Extrapolated total error for $B^+ \rightarrow D(K_S \pi^+ \pi^-)K^+$ vs luminosity

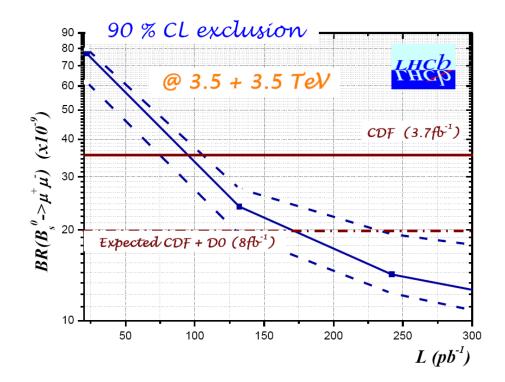
Two approaches pursued in parallel:

- 1. Unbinned approach will be limited by model error at LHCb
- 2. Binned approach
 - has no hard-to-quantify model systematic
 - small loss of statistical power in using discrete bins < 2 fb⁻¹
 - outperforms unbinned fit for luminosity > 2 fb⁻¹

$B_s \rightarrow \mu\mu \text{ in } 2010$

LHCb, Beauty 2009

• LHC first data:


•Less energy (3.5 + 3.5 TeV) •Less instant luminosity

Exclusion sensitivity for

•45% of σ_{bb} w.r.t. 14 TeV (Pythia ratio $\sigma_{bb_{_{7TeV}}}/\sigma_{bb_{_{14TeV}}}$), so 225 µb

•First 10 months after LHC startup (assumed 300 pb⁻¹)

• This data could allow LHCb to overtake Tevatron limits and impose new constraints on SUSY models

$B_s \rightarrow \mu^+ \mu^-$ reach

- LHCb and CMS sensitivities:
 - same "Modified Frequentist Approach" shown at Beauty 2009 (D. Martinez Santos)
- LHCb performance (nominal conditions)

1 fb⁻¹ \Rightarrow exclude BR values down to 5×10⁻⁹

- $3 \text{ fb}^{-1} \Rightarrow 3\sigma$ evidence of SM signal
- **10** fb⁻¹ \Rightarrow 5 σ observation of SM signal
- CMS/ATLAS performance similar with 5 times more L_{int} (collected in ~equal time)
- Startup conditions in 2010 ($\sqrt{s} = 7$ TeV)

LHCb can overtake Tevatron's final sensitivity with ~ 0.2 fb⁻¹

Normalization for $B_- \rightarrow uu$

• Normalization is needed to convert # events into a BR w/o relying on knowledge of σ_{bb} , integrated luminosity or absolute efficiencies

$$BR = BR_n \frac{\varepsilon_n}{\varepsilon} \cdot \frac{P(b \to B_n)}{P(b \to B_s)} \cdot \frac{N}{N_n}$$

Channel	Use	Yield (1 fb^{-1})	
Inclusive $J/\psi(\mu\mu)$	μ -ID calibration	1.7G	7
Inclusive $\Lambda(\pi p)$	μ -ID calibration	740G	
$B ightarrow \hbar h^\prime$	Mass calibration GL calibration Normalization	220k	LHCb can trigger on hadronic B decays:
$B^+ \to J/\psi(\mu\mu)K^+$	Normalization	790k	
$B^0 \rightarrow J/\psi(\mu\mu)K^{*0}(\pi K)$	Normalization	640k	

Ultimate limitation:

Normalization to known BR such as $B^+ \rightarrow J/\psi(\mu\mu)K^+$ with similar detector dependencies Limited due to uncertainty in B_s/B production ratio: about 13%.

Important when close to SM value!

Recent Belle measurement for $B_s \rightarrow D_s^- \pi^+$ (20% now) is promising if Belle continues to run further at Y(5s)