

Overview of the JRA1 activities at JRC-IRMM

F.-J. Hambsch, A. Al-Adili, I. Fabry, A. Plompen, S. Oberstedt, S. Zeynalov

IRMM - Institute for Reference Materials and Measurements Geel - Belgium

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

2

- Digital signal acquisition software adapted to use heterogeneous digitizers (Acqiris and Spectrum)
- GENDARC data acquisition and analysis system (both running under LINUX and SUN Solaris)
- Dedicated software solutions for different experiments
- Signal processing subroutines written in C++
- Application to different Nuclear Physics experiments

Screenshot from GELISCOPE data

acquisition program

3

TwoCardsDigitizer v 1.0

by Alexandru NEGRET

- 1. JAVA Graphical User Interface
 - 4 panels
 - starts, stops, exchanges
 information with the the
 C++ program

2. C++ program

- the backbone of the software package
- 3 running modes

- Dedicated to GAINS; runs on each computer controlling 4 detectors
- Based on structures that can be
- easily re-used

GENDARC Look and Feel

GENDARC provides numerous additional features:

Modern GUI for program control, start, stop, changing display, zooming, etc. for 1D/2D data visualisation

Use of *NTUPLEs* data objects: Complicated n-dimensional analytical cuts possible Raw Data Reduction (factor 2 !)

Graphical cuts in 2D – data

Tools for fitting functions (polynomials, gauss, landau, etc.) to spectra

Publication-quality output in numerous formats (jpg, pdf, eps, ps, gif,..) First successful tests online/offline within our ²³⁵U PFNS experiment

GENDARC Attributes: Controlling the program

Starting up:

New program modules are detected, compiled, linked System Endean checked automatically

Setting up & starting Experiment/ DAA (press buttons)

Create/edit User DAQ /DAA Program

System Configuration By default 1D and 2D histograms defined

Starting a DAQ or DAA process: Press button START DAA or DAQ

GUI & Display (Graphics Editor)

7

Switching between 1D/2D view possible 2D histograms: Same features as for 1D exist

Useful for publication quality graphs

Saving & printing pictures in numerous formats (jpg, pdf, ps, eps, gif..)

Comp Analogue versus digital

Passage of a step like function through an CR-RC⁴ filter

Typical signal shapes

Pile up correction

11

0 FF1 FF2 -100-FF1 corrected Voltage (mV) FF2 corrected -200 -300· -400 -500 200 T 400 600 800 1000 0 Channel

Timing mismatch

12

240 90° 200-Drift time (channels) 160-120-C o 2 80-6 8 40-10 12 20 0. 35 70 105 175 210 140 Pulse height (channels)

CFD and Leading Edge techniques

13

Comparison Analogue-Digital

Comparison Analogue-Digital

Comparison Analogue-Digital

Digitizers for capture measurements

17

Cristian Mihailescu

No further electronics

PH response and linearity

Dead time and time resolution

¹⁹⁷Au capture experiment

20

Dead time correction coefficients

21

1.12 Acqiris DC282 CAEN N1728B 1.08 Dead time correction coefficient 1.04 1 100 150 50 2.5 Conventional 2 1.5 m. 15 i () 1 50 100 150

Ge: Efficiency

22

Higher efficiency in particular at low energies as a result of improved handling of slow pulses. Higher efficiency since we can avoid gamma-flash rejection

23

DSP algorithm are superior to analogue technique

Treatment of data in several ways to find optimum

More time consuming

Needs more resources in terms of computing power and disk capacity