

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx



# Neutron time-of-flight measurements

## at **GELINA**

### S. Kopecky, C. Lampoudis, W. Mondelaers, P. Schillebeeckx

EFNUDAT Workshop 30 August – 2 September, CERN, Geneva

Joint Research Centre (JRC) IRMM - Institute for Reference Materials and Measurements Geel - Belgium http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/



EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

Efforts to produce accurate cross section data in the resonance region including full uncertainty information for nuclear energy applications:

- Accelerator performance
- Target characterization procedures

T. Belgya (EFNUDAT), Schillebeeckx et al. NIMA 613 (2010) 378 : α-spec. + NRCA & NRTA

## Measurement capabilities

C. Massimi, EFNUDAT project reported at Budapest workshop

- Data reduction procedures providing full covariance information
- Resonance analysis and evaluation in RRR and URR: production of ENDF-compatible files with covariances

S. Kopecky, EFNUDAT (Scientific visits I. Sirakov and M. Moxon)



## **TOF-facility GELINA**



- Pulsed white neutron source :  $-10 \text{ meV} < E_n < 20 \text{ MeV}$  $-\Delta t = 1 \text{ ns} \text{ (compression magnet)}$
- Neutron energy by Time-Of-Flight
- Multi-user facility 10 Flight Paths (10 m - 400 m)
- Measurement stations have special equipment to perform:
  - -Total cross section measurements
  - -Partial cross section measurements



## Accelerator refurbishment : started in 2001

4

EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx





## **Improved performance**

EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx

# Computer-controlled operation of accelerator and interlock system







EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx

**EUROPEAN COMMISSION** 



### **Self-indication**





## Capture, Fission







## At GELINA

## transmission, capture and self-indication data

EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx

## **Combine complementary experimental observables :**

- Reduce bias effects
- Traceable resonance energies from transmission
- Scattering radius
- Orbital angular momentum:  $\ell = 0$  assignment (s-wave)
- Spin assignment
  - Thin thick transmission data
  - Capture (thin) transmission (thick) data
  - Self-indication data (C. Massimi EFNUDAT project)
- Normalization of capture data using  $g\Gamma_n$  from transmission of strong capture resonances ( $\Gamma_n < \Gamma_\gamma$ )



## Transmission measurements at 25 m and 50 m

8

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

#### Moderated spectrum



$$T_{exp} = \frac{C_{in} - B_{in}}{C_{out} - B_{out}} \iff e^{-n\sigma_{tot}} \qquad E_r = 6.6735 \pm 0.0030 \text{ eV of } {}^{238}\text{U+n}$$
$$\Rightarrow (E_r, g\Gamma_{n,} \ell = 0, J, \Gamma, ) \qquad L = 26.444 \pm 0.006 \text{ m}$$
$$L = 49.345 \pm 0.012 \text{ m}$$



## Capture and self-indication measurements at 12.5 m, 30m and 60 m

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

- Flux measurements (IC)
  - ${}^{10}B(n, \alpha) < 150 \text{ keV}$
  - $^{235}U(n,f) > 150 \text{ keV}$
- C<sub>6</sub>D<sub>6</sub> liquid scintillators at 125°
- Total energy detection principle +PHWT

 $\int \mathsf{R}(\mathsf{E}_{\mathsf{d}},\mathsf{E}_{\gamma}) \mathsf{WF}(\mathsf{E}_{\mathsf{d}}) \mathsf{d}\mathsf{E}_{\mathsf{d}} = \mathsf{k}\mathsf{E}_{\gamma}$ 

WF : MC simulations (S. Kopecky)

- For each target detector combination
- $\gamma$ -ray attenuation in sample (K<sub>c</sub> in REFIT)
- WF's and K<sub>c</sub> verified by experiment

Borella et al., NIMA 577(2007) 626





## <sup>241</sup>Am(n, $\gamma$ ) measurement at 12.5 m and 50 Hz

10

EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx





## <sup>241</sup>Am + n : transmission and capture ANDES project

11

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx



Normalization capture data :

by simultaneous analysis of capture and transmission data with REFIT Reduction of correction factors to be applied: e.g. for IC, flux profile, ...

# **EUROPEAN COMMISSION** Data reduction with AGS (Analysis of Geel Spectra)

EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx

- Transforms count rate spectra into observables (T, Y<sub>exp</sub>, Y<sub>SI</sub>)
- Full uncertainty propagation starting from counting statistics

$$V_{Z} = U_{Z} + S_{\vec{a}} S_{\vec{a}}^{T}$$

n : dimension of TOF-spectrumk : number of correlated components

12

dim. (n x n) dim. n  $S_a$ : dim. (n x k)

- Reduction of space needed for data storage
- Document all uncertainty components involved in data reduction
  - Study the impact of uncertainty components on RP and cross sections
  - Provides full experimental details to evaluators
- Recommended by International Network of Nuclear Reaction Data Centres to store data in EXFOR
- WPEC sub-group 36

"Reporting and usage of experimental data for evaluation in the RRR"



EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx

- (1) Data reduction starts from spectra subject only to uncorrelated uncertainties
- (2) Channel channel operations (+, -, x, +) and log, exp, ...
- (3) Additional computations using parameters with well defined covariance matrix

$$Z = F(\vec{a}, Y)$$
 e.g.  $Z(t) = Y(t) - (a_1 + a_2 t^{a_3})$ 

Covariance matrix  $\boldsymbol{\mathbb{Y}}_{a}$  well defined

- $\Rightarrow$  symmetric and positive definite
- $\Rightarrow$  Cholesky transformation

V<sub>Y</sub> only diagonal terms :

$$\Rightarrow \mathsf{D}_{\mathsf{Y}} = \mathsf{V}_{\mathsf{Y}} \qquad \qquad \mathsf{v}_{\mathsf{Y},\mathsf{i}\neq\mathsf{j}} = \mathsf{0}$$

$$V_{\vec{a}} = L_{\vec{a}} L_{\vec{a}}^{\mathsf{T}} \xrightarrow{\mathsf{S}_{\vec{a}} = \left(\frac{\partial \mathsf{F}}{\partial \vec{a}}\right) \mathsf{L}_{\vec{a}}}_{\text{diagonal : n values}} \qquad \qquad \mathsf{V}_{Z} = U_{Z} + \mathsf{S}_{\vec{a}} \mathsf{S}_{\vec{a}}^{\mathsf{T}}_{\text{dimension: n x k}}$$

13



## **Data reduction of transmission : T**<sub>exp</sub>



Time /  $\mu$ s



**AN 1** / N 1

## **Output AGS\_PUTX**

|             | δN/N : 0.5 %                                                                             |                                                    |                                                    |                                                    |                                                                |                                                                |                                                                | $C_z = D_z$                                                    | <u>z</u> + S S <sup>T</sup>                                          |
|-------------|------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
|             |                                                                                          | XL                                                 | X <sub>H</sub>                                     | Z                                                  | δZ                                                             | $\delta Z_u$                                                   | Dz                                                             |                                                                | S                                                                    |
|             | δB <sub>in</sub> / B <sub>in</sub> :10.0 %<br>δB <sub>in</sub> / B <sub>in</sub> : 5.0 % |                                                    |                                                    |                                                    |                                                                |                                                                | $\delta Z_u^2$                                                 | B <sub>in</sub>                                                | B <sub>out</sub>                                                     |
|             |                                                                                          | 800<br>1600<br>2400<br>3200                        | 1600<br>2400<br>3200<br>4000                       | 0.999<br>0.999<br>0.999<br>0.999                   | 0.79E-2<br>0.86E-2<br>0.92E-2<br>0.97E-2                       | 0.59E-2<br>0.67E-2<br>0.73E-2<br>0.78E-2                       | 0.35E-4<br>0.45E-4<br>0.54E-4<br>0.61E-4                       | 0.14E-2<br>0.18E-2<br>0.21E-2<br>0.24E-2                       | -0.08E-2<br>-0.10E-2<br>-0.12E-2<br>-0.13E-2                         |
|             |                                                                                          |                                                    | •                                                  |                                                    | •                                                              |                                                                | •                                                              | •                                                              |                                                                      |
| 'light / ns |                                                                                          | 16000<br>16800<br>17600<br>18400<br>19200<br>20000 | 16800<br>17600<br>18400<br>19200<br>20000<br>20800 | 0.899<br>0.818<br>0.701<br>0.594<br>0.501<br>0.504 | 1.30E-2<br>1.24E-2<br>1.15E-2<br>1.06E-2<br>0.98E-2<br>1.00E-2 | 1.07E-2<br>1.02E-2<br>0.93E-2<br>0.84E-2<br>0.76E-2<br>0.77E-2 | 1.15E-4<br>1.04E-4<br>0.86E-4<br>0.71E-4<br>0.57E-4<br>0.59E-4 | 0.51E-2<br>0.53E-2<br>0.54E-2<br>0.55E-2<br>0.56E-2<br>0.57E-2 | -0.25E-2<br>-0.24E-2<br>-0.21E-2<br>-0.18E-2<br>-0.15E-2<br>-0.16E-2 |
| Time- of- 1 |                                                                                          | 20800<br>21600                                     | 21600<br>22400                                     | 0.581<br>0.707                                     | 1.09E-2<br>1.22E-2                                             | 0.85E-2<br>0.98E-2                                             | 0.73E-4<br>0.97E-4                                             | 0.58E-2<br>0.60E-2                                             | -0.19E-2<br>-0.23E-2                                                 |
|             | 10 <sup>4</sup><br>10 <sup>4</sup><br>10 <sup>4</sup> 10 <sup>5</sup> 10 <sup>6</sup>    | 964000<br>972000<br>980000                         | 972000<br>980000<br>988000                         | 0.999<br>1.037<br>1.001                            | 5.91E-2<br>6.09E-2<br>6.01E-2                                  | 3.75E-2<br>3.89E-2<br>3.80E-2                                  | 14.06E-4<br>15.13E-4<br>14.46E-4                               | 3.98E-2<br>4.04E-2<br>4.05E-2                                  | -2.18E-2<br>-2.31E-2<br>-2.23E-2                                     |
|             | Time- of- flight / ns                                                                    | 988000                                             | 996000                                             | 1.010                                              | 5.92E-2                                                        | 3.77E-2                                                        | 14.23E-4                                                       | 3.96E-2                                                        | -2.20E-2                                                             |

Ν

0.50E-2

0.50E-2

0.50E-2

0.50E-2

.

.

0.45E-2

0.41E-2

0.35E-2

0.30E-2

0.25E-2

0.25E-2

0.29E-2

0.35E-2

. .

.

0.50E-2

0.52E-2

0.50E-2

0.50E-2



## **Peelle's Pertinent Puzzle**

16



 $\Rightarrow$  Reporting Z<sub>exp</sub> + V<sub>z</sub> does not provide enough experimental information to evaluate data



## Solution : Fröhner, NSE 126 (1997) 1-18

17

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

$$(\mathsf{N}, \vec{\mathsf{Y}}) = \mathsf{f}(\mathsf{N}, \overline{\mathsf{Z}}) = (\mathsf{N}, \frac{\overline{\mathsf{Z}}}{\mathsf{N}})$$
$$\chi^{2}(\mathsf{N}, \overline{\mathsf{Z}}) = ((\mathsf{N}_{\mathsf{exp}}, \vec{\mathsf{Y}}_{\mathsf{exp}}) - \mathsf{f}(\mathsf{N}, \overline{\mathsf{Z}}))^{\mathsf{T}} \,\, \mathsf{V}_{(\mathsf{N},\mathsf{Y})}^{-1} \,\, ((\mathsf{N}_{\mathsf{exp}}, \vec{\mathsf{Y}}_{\mathsf{exp}}) - \mathsf{f}(\mathsf{N}, \overline{\mathsf{Z}}))$$



# Image: SolutionPeelle's Pertinent Puzzle: e.g. <sup>103</sup>Rh(n,γ) in URR<br/>(EFNUDAT project)

18

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx





## Evaluation for Cd + n IAEA – IRMM NUDAME project

#### EFNUDAT, 30 August – 2 September, 2010, CERN, Geneva, P. Schillebeeckx

- Capture measurements with enriched <sup>111</sup>Cd at ORELA Wasson and Allen Phys. Rev. C 7 (1973) 780
- Transmission measurements with enriched <sup>110, 112, 114,116</sup>Cd and <sup>nat</sup>Cd at Columbia Univ. (NEVIS synchrocyclotron)

Liou et al. Phys. Rev. C 10 (1974) 709

- Capture measurements with enriched <sup>110, 112, 114,116</sup>Cd at ORELA Musgrove et al., J. Phys. G:Nucl. Phys., 4 (1978) 771
- Capture measurements with enriched <sup>113</sup>Cd at LANL Frankle et al., Phys. Rev. C 45 (1992) 2143
- Transmission and capture measurements with enriched <sup>113</sup>Cd at ORELA Frankle et al., Phys. Rev. C 50 (1994) 2774
- Transmission and capture measurements with <sup>nat</sup>Cd at GELINA

⇒ Simultaneous resonance shape analysis with REFIT



## <sup>113</sup>Cd+n: 0.179 eV resonance

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx



### **Experiment** $\Rightarrow$ **Data reduction with AGS** $\Rightarrow$ **REFIT**



Kopecky et al., NIMB 267 (2009) 2345 - 2350



## <sup>113</sup>Cd : impact of uncertainty components

### (only transmission)

21

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

| Parameter               | δ <b>p</b> ini | р       |   | δ <b>ρ</b> | ρ <b>(p</b> <sub>i</sub> , <b>p</b> <sub>j</sub> ) |      |              |      |       |                |       |
|-------------------------|----------------|---------|---|------------|----------------------------------------------------|------|--------------|------|-------|----------------|-------|
|                         |                |         |   |            | E <sub>R</sub>                                     | Γγ   | $\Gamma_{n}$ | L    | n     | T <sub>D</sub> | Ν     |
| E <sub>R</sub> / meV    | -              | 178.7   | ± | 0.074      | 1.00                                               | 0.53 | 0.28         | 0.13 | 0.00  | 0.00           | -0.34 |
| $\Gamma_{\gamma}$ / meV | -              | 113.5   | ± | 0.22       |                                                    | 1.00 | 0.26         | 0.20 | 0.02  | -0.04          | -0.70 |
| $\Gamma_n$ / meV        | -              | 0.640   | ± | 0.0036     |                                                    |      | 1.00         | 0.11 | -0.91 | -0.00          | -0.28 |
| L / m                   | 0.006          | 26.4439 | ± | 0.006      |                                                    |      |              | 1.00 | -0.00 | 0.01           | -0.09 |
| n / (at/b)              | 0.5 %          |         | ± | 0.5 %      |                                                    |      |              |      | 1.00  | 0.00           | -0.00 |
| T <sub>D</sub> / meV    | 0.5 %          | 25.46   | ± | 0.5 %      |                                                    |      |              |      |       | 1.00           | 0.00  |
| N (norm)                | 0.5 %          | 1.000   | ± | 0.0013     |                                                    |      |              |      |       |                | 1.00  |

Data reduction: counting statistics, dead time, background

| Parameter       | p / meV        | ρ <b>(p</b> i, <b>p</b> j) |  |  |  |  |
|-----------------|----------------|----------------------------|--|--|--|--|
| E <sub>R</sub>  | 178.7 ± 0.069  | 1.00 0.43 0.64             |  |  |  |  |
| $\Gamma_\gamma$ | 113.5 ± 0.16   | 1.00 0.31                  |  |  |  |  |
| $\Gamma_{n}$    | 0.640 ± 0.0011 | 1.00                       |  |  |  |  |



## Evaluation for <sup>nat</sup>Cd + n

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

22

**Transmission** Capture 0.8 0.70 1.0 Exp. IRMM eval. ENDF/B-VII 0.6 0.65 Transmission 0.8 Yield 0.60 LZ 0.14 0.16 0.18 0.20 0.4 0.6 0.75 0.70 0.2 0.4 0.65 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.0 └─ 0.01 0.2 0.01 0.1 0.1 Neutron energy / eV Neutron energy / eV



## <sup>nat</sup>Cd(n,γ) at 2200 m/s



23



Continuous efforts to produce accurate cross section data in the

resonance region together with full uncertainty information

 $\Rightarrow$  full ENDF compatible evaluation including covariances (EFNUDAT)

### Outlook

- Evaluation for Rh, W and Cu (collaboration with ORNL)
- <sup>197</sup>Au + n : evaluation in URR and standard σ(n, γ) (IAEA CRP, nTOF) Simultaneous analysis capture + transmission + link to OM (S. Kopecky)
- <sup>238</sup>U + n : evaluation in URR and σ(n, γ) ANDES : GELINA & nTOF
- <sup>241</sup>Am + n : evaluation in RRR based on transmission and capture ANDES : GELINA & nTOF
- Resonance energies traceable to SI units

# Resonance energies depend on response function of the TOF spectrometer

25



EUROPEAN COMMISSION



# Capture yield: impact of threshold $E_d > 160$ and 650 keV

26

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

**JRC** 

**EUROPEAN COMMISSION** 





## **Peelle's Pertinent Problem**

EFNUDAT, 30 August - 2 September, 2010, CERN, Geneva, P. Schillebeeckx

