

Final EFNUDAT scientific workshop

PGAA analysis of enriched samples

Tamás Belgya Institute of Isotopes Hungarian Academy of Sciences, H-1525, POB 77, Budapest, Hungary

*E-mail: Belgya@IKI.KFKI.HU, http://www.iki.kfki.hu/nuclear/

CERN, Geneva, 30 Aug. -02 Sept. 2010

Content

•Motivations:

- -Users required characterization of targets
- -Capture cross sections can be measured for certain isotopes
- •The Prompt Gamma Activation Analysis
- •New method for isotopic analysis
- •Examples
- Conclusion

The Prompt Gamma Activation Analysis

(Features)

- •Non-destructive nuclear
- •Multi-elemental, multi-isotopic
- Independent of chemical environment
- •Minimal sample preparation
- •Average composition of the irradiated volume
- •Exact for homogeneous samples
- •Good for major, minor components and some traces, unique for H, B
- •Great variety in elemental sensitivities, detection limits

PGAA analysis of natural samples

Spectrur C/HY PC/SPECT RAVA RCHEO\ZOLDP ALA /FV 41103C. MCA Live Tim 3290.48

_															
											c%	c%	C%	c%	
Z	EI	M	m	un c%	m(bkg)	un c%	m(net)	n(ox)	m(ox)	un c%	atom	el∕el	el/ox	ox/ox	un c%
1	н	1.00794	0.0729	1.2	0.00018	3.0	0.07272	0.5	0.6499	12	0.027	0.904	0.484	4.328	1.2
5	в	10.811	6.7E-05	1.1	1E-08	0.0	6.7E-05	1.5	0.00022	12	3E-04	8E-04	4E-04	0.001	1.2
11	Na	22.9898	0.39095	2.5	0	0.0	0.39095	0.5	0.52699	2.5	3.36	4.859	2.604	3.51	2.5
12	Mg	24.305	0.93332	3.6	0	0.0	0.93332	1	1.5477	3.6	8.48	11.6	6.216	10.31	3.6
13	AI	26.9815	1.21162	1.6	0.00273	5.0	1.20889	1.5	2.28416	1.6	12.19	15.03	8.051	15.21	1.6
14	Si	28.0855	3.09038	1.5	0	0.0	3.09038	2	6.61136	1.5	32.45	38.41	20.58	44.03	1.5
16	S	32.066	0.03361	5.8	0	0.0	0.03361	3	0.08391	5.8	0.403	0.418	0.224	0.559	5.8
17	CI	35.4527	0.0015	7.0	1.8E-05	20.0	0.00149	0	0.00149	7.1	0.02	0.018	0.01	0.01	7.1
19	к	39.0983	0.04832	12.4	0	0.0	0.04832	0.5	0.05821	12.4	0.706	0.601	0.322	0.388	12.4
20	Ca	40.078	0.75737	2.0	0	0.0	0.75737	1	1.05972	2.0	11.35	9.414	5.044	7.058	2.0
21	Sc	44.9559	0.00063	14.5	0	0.0	0.00063	1.5	0.00097	14.5	0.011	0.008	0.004	0.006	14.5
22	Ti	47.867	0.1515	1.0	0	0.0	0.1515	2	0.25277	1.0	2.711	1.883	1.009	1.683	1.0
23	٧	50.9415	0.00471	6.8	0	0.0	0.00471	2.5	0.00841	6.8	0.09	0.059	0.031	0.056	6.8
24	Cr	51.9961	0.00984	7.9	0	0.0	0.00984	1.5	0.01438	7.9	0.191	0.122	0.066	0.096	7.9
25	Mn	54.938	0.01509	2.4	0	0.0	0.01509	1	0.01948	2.4	0.31	0.188	0.101	0.13	2.4
26	Fe	55.845	1.3222	1.2	0.00144	5.0	1.32076	1.5	1.88835	12	27.57	16.42	8.796	12.58	1.2
27	Co	58.9832	0.00531	4.0	0	0.0	0.00531	1	0.00676	4.0	0.117	0.066	0.035	0.045	4.0
62	Sm	150.36	5.4E-05	2.1	0	0.0	5.4E-05	1.5	6.3E-05	2.1	0.003	7E-04	4E-04	4E-04	2.1
64	Gd	157.25	7.6E-05	2.0	0	0.0	7.6E-05	1.5	8.7E-05	2.0	0.004	9E-04	5E-04	6E-04	2.0
66	Dy	162.5	0.00014	18.3	0	0.0	0.00014	1.5	0.00017	18.3	0.009	0.002	1E-03	0.001	18.3
	8.04523								15.0151	0.806	100	100	53,58	100	
	- O calculated								6.96985	46.42	%				
	mass w/o O														

DETERMINATION OF CHEMICAL COMPOSITION

$$A_{\gamma} = m \cdot S \cdot t; \quad S = \frac{N_{A}}{M} \cdot \underbrace{\theta \cdot \sigma_{0} \cdot P_{\gamma}}_{\sigma_{\gamma}} \cdot \phi \cdot \varepsilon(E_{\gamma}) \cdot f(E_{\gamma})$$
From PGAA library

Fit from spectrum

- m: Mass of the element
- S: Sensitivity
- A_{γ} : Peak area
- N_A: Avogadro-number
- M: Molar weight
- $\boldsymbol{\theta}$: Isotopic abundance
- σ_0 : Neutron capture cross-section
- P_{γ} : Gamma-yield
- φ_0 : Neutron flux
- $\epsilon(E_{\gamma})$: Detector efficiency

PGA analysis program in **EXCEL**

Zs. Révay, *Determining Elemental Composition Using Prompt-gamma Activation Analysis.* Analytical Chemistry **81** (2009) 6851-6859

PGAA result

(Bio ash)

Ş	Spectrum: N22HAM1.MCA					-	Peak	list:	N22HAM	1.pkl		40	U	Incert	ainty calcula	tion:	statistical	
	Live	time:	39126.63	s	Neutron		1.50E+8	±2	%, temp	35	K, BKG:	13	vacusjan		Conc. for	mat:	ppm / %	
7	FI	м	m	unc	m	unc	m	ox.	m	unc	с%	unc	с%	unc	с%	unc	с%	unc
~			meas	%	Bkg	%	net	st.	ОХ	%	atom	%	el/el	%	el/ox	%	ox/ox	%
1	Η	1.008	6.82E-4	0.6	1.15E-5	2.0	6.70E-4	1	5.99E-3	0.6	4.02	1.9	0.187	1.5	0.093	0.9	0.83	1.8
6	С	12.01	0.080	3.8		0.0	0.08	4	0.29	3.8	40	2.5	22	3.2	11.1	3.4	41	2.4
9	F	19	4.89E-2	5.	2.06E-4	20.	4.87E-2	-1	4.87E-2	5.	16	4.	14	4.	6.8	5.	6.8	5.
12	Mg	24.31	1.08E-2	5.		0.0	1.08E-2	2	1.79E-2	5.	2.7	5.	3.0	5.	1.5	5.	2.5	5.
13	AI	26.98	1.06E-2	1.6	1.73E-3	3.0	8.84E-3	3	1.67E-2	2.0	1.98	2.7	2.47	2.4	1.23	2.1	2.32	2.6
14	Si	28.09	0.064	2.1		0.0	0.06	4	0.14	2.1	13.7	2.5	17.8	2.2	8.8	2.1	18.9	2.4
15	р	30.97	7.23E-3	5.		0.0	7.23E-3	5	1.66E-2	5.	1.4	6.	2.0	<u>6</u> .	1.0	5.	2.3	6.
17	7 Cl 35.45 7.99E-4 39. 0.0 7.99E-4 -1 7.99E-4 39. 0.1 39. 0.2 39. 0.11 39. 0.1 39.																	
19	9 K 39.1 3.78E-2 2.4 0.0 3.78E-2 1 4.56E-2 2.4 5.9 2.9 10.6 2.5 5.3 2.4 6.3 2.8																	
20	0 Ca 40.08 0.092 2.4 0.0 0.099 2 0.13 2.4 13.9 2.7 26 2.1 12.8 2.2 18.0 2.6																	
22	Ti	47.87	8.30E-4	2.4		0.0	8.30E-4	4	1.39E-3	2.4	0.105	3.0	0.23	2.7	0.115	2.5	0.193	2.9
24	Cr	52	1.21E-5	49.	0.405.0	0.0	1.21E-5	3	1.77E-5	49.	10 ppm	49.	30 ppm	49.	20 ppm	49.	20 ppm	49.
25	Mn	54.94	2.35E-3	3.8	3.18E-6	10.	2.35E-3	3	3.37E-3	3.8	0.26	4.	0.65	4.0	0.33	3.8	0.47	4.
27	Co	58.93	1.08E-5	15.		0.0	1.08E-5	2	1.38E-5	15.	11 ppm	15.	30 ppm	15.	15 ppm	15.	19 ppm	15.
28	NI	58.69	3.35E-5	11.		0.0	3.35E-5	2	4.27E-5	11.	35 ppm	11.	90 ppm	11.	50 ppm	11.	60 ppm	11.
34	Se	78.96	2.59E-4	8.		0.0	2.59E-4	4	3.64E-4	8.	200 ppm	<u>9.</u>	0.07	8.	360 ppm	8.	0.051	8.
38	Sr	87.62	9.19E-4	5.		0.0	9.19E-4	2	1.09E-3	5.	0.063	5.	0.26	5.	0.13	5.	0.15	5.
48	Cd	112.4	1.07E-6	1.9		0.0	1.0/E-6	2	1.22E-6	1.9	0.58 ppm	2.6	3.0 ppm	2.3	1.49 ppm	2.0	1.70 ppm	2.6
49	In	114.8	3.63E-6	8.		0.0	3.63E-6	3	4.39E-6	8.	1.9 ppm	<u>8</u> .	10 ppm	<u>8</u> .	5.0 ppm	<u>ð</u> .	6.1 ppm	8.
50	Sn	118.7	3.13E-3	6.		0.0	3.13E-3	2	3.55E-3	6.	0.16	6.	0.87	6.	0.43	6.	0.49	6.
60	Nd	144.2	1.13E-5	8.		0.0	1.13E-5	3	1.32E-5	8.	4.7 ppm	9.	31 ppm	ŏ.	16 ppm	ð.	18 ppm	9.
62	Sm	150.4	6.74E-7	1.6		0.0	0./4E-/	3	1.82E-1	1.6	0.2/1ppm	2.4	1.88 ppm	2.1	0.94 ppm	1.8	1.09 ppm	2.4
64	Gđ	157.3	9.60E-7	19.		0.0	9.60E-7	3	1.11E-6	19.	0.4 ppm	19.	3 ppm	19.	1.3 ppm	19.	1.5 ppm	19.
		0																
<u> </u>																		
	Ous	antificat	ion limit for	50	%	- 0 0	olculated	2.0	0.71504	50	% O/ total		100.30		43.70		100.43	
	Quo	mincal		00	/0	mass	without C	`	0.35819									
						111035	without C	,	0.55010									
			self-abs.:	no	(recalc.:	Ctrl+S	Shift+S)			thick	mess (mm) :	1	density:	2.7	oxide:	yes		
		version: 3.2.2 (2008.04.21)																

Enriched samples

- Questions are the isotopic and chemical compositions
- Target forms (measured in the EFNUDAT project)
 - Self supporting targets \Rightarrow Fe, Ni, Zr (metals)
 - Compounds packed in AI discs \Rightarrow ⁹⁶ZrO₂, ^{176,177,178,179}HfO₂
- Evaluation software exists for elemental samples
- Evaluation of enriched samples can also be done with this software
 - Solution is the definition of a new "element" of interest with its predetermined composition
 - First we needed to determine the enrichment

Example Enrichment of Hf samples

- Samples from Bulgaria were measured to determine enrichment and purity (Hf-176, Hf-177, Hf-178, Hf-179) + Natural Hf
- First step is the gamma-ray identification

Identification of gamma rays

- The gamma-ray identification can be done
 - using the ENSDF (EGAF) or
 - by comparing spectra

Isotope	θ(%)	$\sigma_{\gamma}^{\ Z}(b)$	$g_{ m w}$	Ν _γ
Hf-174	0.16(1)	549(7)	0.98	23
Hf-176	5.26(7)	24(3)	1	5
Hf-177	18.60(9)	373(10)	1.02	308
Hf-178	27.28(7)	137(7)	1	347
Hf-179	13.629(6)	41(3)	0.99	339
Hf-180	35.08(16)	13.04(7)	0.99	105

Identification by ENSDF and EGAF (Richard B. Firestone)

http://www-nds.iaea.org/pgaa/pgaa7/index.html

Determination of enrichment (second step)

 Comparator method can be used for determination of isotopic (i) composition of samples (X) in comparison with natural elemental sample (N)

$$\frac{A_{Xi\gamma}}{A_{Ni\gamma}} = \frac{n_X}{n_N} \frac{\theta_{Xi}}{\theta_{Ni}} \frac{P_{Xi\gamma}}{P_{Xi\gamma}} \frac{\sigma_{Xith}}{\sigma_{Xith}} \frac{\phi_X}{\phi_N} \frac{\varepsilon(E_{Xi\gamma})}{\varepsilon(E_{Xi\gamma})} \frac{f_X(E_{Xi\gamma})}{f_N(E_{Xi\gamma})} \frac{t_X}{t_N}; if f_X \approx f_N$$

$$\frac{A_{Xi\gamma}}{A_{Ni\gamma}} = \frac{n_X}{\underbrace{n_N}} \frac{\phi_X}{\phi_N} \frac{t_X}{t_N} \frac{\theta_{Xi}}{\theta_{Ni}} \Longrightarrow \theta_{Xi} = \frac{1}{C} \frac{A_{Xi\gamma}}{A_{Ni\gamma}} \theta_{Ni}$$

- The factor *C* can be determined from the renormalization of the isotopic compositions θ_{χ_i}
- Good isotopic identification of gamma rays is important

Enrichment of Hf samples (Preliminary results)

Area ratio	Area ratio relative to natural							
Area								
	Eg	176Hf	177Hf	178Hf	179Hf	Natural		
176	395	23523	3871	100	100	3265		
177	1419	38789	58606	6006	1940	26720		
178	1003	6610	4633	94842	5180	19159		
179	1065	5072	100	20457	260424	32362		
180	5694	591	100	315	4434	4780		
A roo rotio								
Alea Tallo	Ea	176Uf	177⊔f	170∐f	170Llf		Notural ab	undanaa
176	⊑y 205		1 196		0.021		Natural ab	unuance
170	1/10	1.200	2 103	0.031	0.031		18.6	
178	1419	0.345	2.193	1 950	0.073		27.20	
170	1065	0.545	0.242	4.330	8.047		13.62	
180	5694	0.137	0.003	0.052	0.047		35.02	
100	5034	0.124	0.021	0.000	0.320		55.00	
Unnorm ab	oundance							
	Eg	176Hf	177Hf	178Hf	179Hf			
176	395	37.90	6.24	0.16	0.16			
177	1419	27.00	40.80	4.18	1.35			
178	1003	9.42	6.60	135.09	7.38			
179	1065	2.13	0.04	8.61	109.60			
180	5694	4.34	0.73	2.31	32.54			
		80.785	54.408	150.356	151.034			
Normolizo	d obundono	•						
normalized		47014	4771.14	4701.14	4701.14			
176	⊑y 205			0.11	0.11			
170	1410	40.91	74.00	0.11	0.11			
170	1419	33.42	14.90	2.70	0.09			
170	1003	2.64	0.09	09.00 5 72	4.09			
180	5604	2.04	1.00	1.54	21 55			
100	5094	100.000	100.000	100 000	100 000			
		100.000	100.000	100.000	100.000			

Result of the analysis of Hf-176 sample

ę	Spec Live	trum: time:	S87HF1 40217	76.MC s	CA Neutron	Flux:	Peak 1.50E+8	list: <mark>±2</mark>	S87HF17 %, temp	'6.pkl <mark>35</mark>	K, BKG:	12	air08jan	Uncert	ainty calcula Conc. for	tion: mat:	statistical ppm / %	
z	EI	М	m meas	unc %	m Bkg	unc %	m net	ox. st.	m ox	unc %	c% atom	unc %	c% el/el	unc %	c% el/ox	unc %	c% ox/ox	unc %
48	Cd	112.4	1.14E-7	18.		0.0	1.14E-7	2	1.30E-7	18.	40 ppm	18.	26 ppm	18.	22 ppm	18.	25 ppm	18.
72	Hf	178.5	4.45E-3	5.		0.0	4.45E-3	4	5.25E-3	5.	100	0.0	100	0.0	85	0.8	100	0.0
82	Pb	207.2	1.81E-3	13.	2.25E-3	7.		2										
		0																
		0																
		0																
		0												_				
		0																
		0												-				
		0																
		0												-				
		0												-				
		0																
		0																
		0																
		0																
		0																
		0																
		0																
		0																
		0																
		0																
		0																
		0																
		0								_								
Q	uant	tificatio	n limit for	<u>50</u>	%	- <mark>O ca</mark> mass	0.00445 alculated without C	4)	0.00525 0.0008 0.00445	5 15	100. % O/ total		100	-	85.		100.	
		S	elf-abs.:	yes	(recalc.:	Ctrl+S	Shift+S)			thick	(mm) :	2.06	density	3.66	oxide:	yes		
				,									, ,				version: 3.2.2 (2008.04.2

Summary of results for other samples

- We have written reports on the results of the analysis that were sent to the proposers
- Results on ⁹⁶ZrO₂ sample and three Zr metal discs from Geel.
 - The enriched sample had CI, Ti, Hf impurities, Hf is disastrous for observing ⁹⁶Zr
 - The old Zr disc is the purest (B, Ti, Mn, Fe, Pr, Hf, Au on the ppm level), while the other two had substantial Hf impurity
- Results for enriched ^{58,60,62}Ni and ^{54,56,57}Fe samples
 - The isotopic composition of the samples were found in agreement with its certificate (the main components >99.5%)
 - For elemental impurities we found H, V, Mn, Ni, Cu in the Fe and H, P in the Ni samples on the ppm level, while H on the 1% level

Conclusions

- The PGAA method is capable to determine the isotopic composition of enriched samples
 - It is especially good since it is sensitive to the high cross section materials, which is the same for other low energy neutron experiments
- There are difficulties in case of very high cross section materials because of the complexity of the spectra and the suppression of the low yield components
- At extreme high enrichment it is also difficult to find the small concentration isotopes
- These later two difficulties are related to the relatively small dynamic range, which is about 10⁻⁴

Thank you for your attention!

Test of nitrogen new intensities 27 Al(n, γ) reaction inverted *Q*-value

PGAA-NIPS facilities

The PGAA-NIPS facility

Determination of nitrogen intensities and detector efficiency function in one step Crossing Intensity Sum (CIS)

$$I_{i,j} = A_{i,j} \,\varepsilon^{-1}(E_{i,j})$$

$$T_{f} = \sum_{i>f} I_{i,j} = \sum_{i>f} A_{i,j} \varepsilon^{-1}(E_{i,j}) = C \quad f = 1,2,...,n-1$$

$$Q = \sum_{\substack{1 \le f \le n-1 \\ 1 \le s \le n-1}} (T_f - C) W_{f,s} (T_s - C) + \sum_m \frac{\left(\widetilde{\varepsilon}_m^{-1} - \varepsilon^{-1}(E_{i,j})\right)^2}{\sigma_m^2}$$

- Sums of crossing intensities are constant C
- •Least-squares fit for inverse efficiency function ε^1 and C
- Input is peak areas and efficiencies at low energy
- •CIS for line $1 \equiv$ intensity sum to the ground state
- CIS for line n-1 = intensity sum for the primary transitions

New : $\sigma_{th} = 80 - 83 \ mb$ Mughabghab : $\sigma_{th} = 79.8(14) \ mb$

Results

Ratio=Intensity Jurney / Intensity this work

Total neutron capture cross section from γ -spectroscopy

Method	Equation	Notes
1	$\sigma_{th} = \frac{\sigma_{\gamma}}{\theta P_{\gamma}}$	P_{γ} must be known, for example from beta decay if the captured nucleus is unstable.
2	$\sigma_{th} = \sum_{f=1}^{n-1} \sigma_{\gamma C \to f} (1 + \alpha_f) (1 + PCC_f)$	The sum of all primary transitions from the capture state can be used for nuclei with relatively simple decay scheme.
3	$\sigma_{th} = \sum_{i=2}^{n} \sigma_{\gamma i \to g.s.} (1 + \alpha_i) (1 + PCC_i)$	The sum of all ground state transitions can be used for nuclei with relatively simple decay scheme. Conversion coefficients α must be known.
4	Average of CISs: $Q = \min \left(\sum_{\substack{1 \le f \le n-1 \\ 1 \le s \le n-1}} (T_f - \sigma_{th}) w_{f,s} (T_s - \sigma_{th}) \right)$	Well balanced and relatively simple decay scheme. Conversion coefficients α must be known.
5	$\sigma_{ih} = \sum_{i} \overline{E_i \sigma_{ji} (1 + \alpha_i) (1 + PCC_i)} / B_n$	The energy weighted sum can be used for any nuclei with resolved gamma- transitions. E_i is the energy of the transition, B_n is the binding energy and <i>PCC</i> is the pair conversion.

For which nuclei we can use that

(Simple and complex spectra)

Consequences

- Method 1 based on decay γ-rays or X-rays can be used for any complexity
 - Precision depends on the P_{γ} value
- Method 2-5 is applicable for nuclei with manageable decay scheme (~500 γ-rays)
 - Limitation can be the unobserved conversion electron intensities
- Method 5 is applicable for spectra with resolvable γ-lines (~ 700-800 γ-rays)
 - Limitation can be the unobserved conversion electron intensities
 - Similar to the weighting function method used with C_6D_6 detectors
- Above that quasi continuum of γ -rays appears in the spectra
 - A possible approach is stripping or deconvolution of spectra on the few percent level accuracy
 - C₆D₆ detector or total absorption detector (needs highly enriched sample, unobserved conversion electron can also be a problem)

Question of completeness from the experimental point of view

• The Q-value test (equivalent to method 5) was applied in the past to estimate completeness

$$B_{n} = \sum_{i \in observed \gamma} \frac{E_{i} \sigma_{\gamma i}}{\sigma_{th}}; \quad \sigma_{th} = \sum_{i \in observed \gamma} \frac{E_{i} \sigma_{\gamma i}}{B_{n}}$$

- This is still the best way to find out the degree of completeness, however we propose to use the inverse Q-value instead and compare it directly to other independent Xsection values
- There are experimental methods that do not depend on observing all of the γ-rays, they provide the independent Xsections (they usually have other problems)
 - Pile oscillator, activation, transmission and calorimeter

An example

¹⁰¹Ru(n, γ) reaction (proposed by ILL)

Earlier data:

- No γ -rays in the ENSDF database
- EXFOR

$\sigma_{ ext{th}}$ (b)	Facility	Method	Author	year
3.4(9)	Reactor Internal McMaster	PGAA	Islam	1991
3.1(9)	Reactor Oakridge	Activation ??	Halperin	1964
5.5(1.4)	Reactor Oakridge	Mass spectrometry	Halperin	1965

The only independent or different method is the mass spectrometry

¹⁰¹Ru(n, γ) reaction studied at our PGAA facility

Unobserved continuum is at least 40%

¹⁰¹Ru g.s. spin $5/2^+ \rightarrow$ capture state spins 2^+ and 3^+

¹⁰²Ru: final state cumulative level number for spins 2,3,4,5 at 9.3 MeV ~1.5×10⁵

Minimum observed σ_{γ} in the 2-5 MeV range is 0.001 b

Estimate: maximum missing intensity = $1.5 \times 10^5 \times 0.001/4 = 37.5$ b ! \rightarrow

useless limit \rightarrow We need to use better model (e.g. DICEBOX Frantisek Becvar)

Test with ${}^{27}Al(n,\gamma)$

²⁰⁶Pb(n,γ) spectrum

New neutron capture decay scheme of ²⁰⁷Pb

Crossing Intensity Sums for the decay scheme of ²⁰⁷Pb

Results for ^{204,206,207}Pb Xsec

Isotope	This work (mb)	Mugabgab (mb)	Comment
²⁰⁴ Pb	482(20)	661(70)	preliminary
²⁰⁶ Pb	28.7(7)	26.6(12)	Increase is due to the N source
²⁰⁷ Pb	649(14)	625(30)	increase is due to the N source

^{127,129}I chopped beam (n,γ) spectra

Simplified decay scheme of ¹³⁰I from literature

Results for ¹²⁹I Xsec

Year	Author	Method	σ_{th} (b)
			<u></u>
1956	Purkayastha <i>et al.</i>	Activation reactor	35
1958	Roy <i>et al.</i>	Activation reactor	26.7(20)
1963	Pattenden et al.	TOF	28(2)
1969	Block <i>et al.</i>	TOF	31(4)
1983	Friedmann et al.	Activation reactor	33.9(19)
1996	Nakamura <i>et al.</i>	Activation reactor	30.3(12)
2007	Belgya et al.	Chopped cycl. act.	30.6(11)

Neutron energy is mostly below the first resonance

Total neutron capture cross section another way

Total energy detector concept, ε=E_γ or inverse Q value;

$$\sigma_{th} = \sum_{i} E_i \sigma_{\gamma i} (1 + \alpha_i) (1 + PCC_i) / B_n$$

- i= all transitions, (no decay scheme is needed)
- Good identification is necessary, eg. ²⁰⁹Bi, ²⁰⁶Pb, ²⁷Al, etc.

Total neutron capture cross section another way

• From decay gamma rays:

$$\sigma_{th} = \frac{\sigma_{\gamma}}{\theta P_{\gamma}}$$

- Continuous beam activation (traditional)
- Chopped beam activation (new)
- Absolute decay probability P_γ is needed, ^{238,235}U, ²³²Th,
 ¹²⁹I, ⁹⁹Tc, ²⁷AI, Te isotopes etc.,

Long decay of ¹³⁰I ground state

E (keV)	T1/2 (h)	Uncertainty	mean	deviation	ENSDF	ucertainty
417	12.375	0.031	12.39	0.035	12.36	0.01
536	12.439	0.019				
668	12.360	0.022				
740	12.387	0.020				
1158	12.253	0.039				

Peak area of 536 and 668 keV $^{130}I(\beta-)^{130}Xe$ decay gamma rays during activation and decay *F*=71%, *R*_m=36%, λ_m =1.279E-3, χ^2 =1.25 proposed new

New fit results and uncertainties

	Present work	Unc.	Rel. U.	Literature
d	516.9	8.0	1.55	-
R _m	0.355	0.008	2.14	0.60(9) a)
λ_{m}	1.279E-3	1.6E-05	1.27	1.316E-3(<mark>3E-6</mark>) b)
λ_{g}	1.558E-05	2.3E-07	1.49	fixed
F	0.709	0.009	1.26	0.83(3) a)
b _g	0.997	0.016	1.58	fixed
b _m	0.987	0.034	3.39	fixed
deadt_corr	0.0218	0.0013	6.10	-
b668g	0.832	0.012	1.39	-

a) P.K. Hopke, A.G.Jones, W.B. Walters, A. Prindle, R.A. Meyer, PRC 2 (1973) 745

b) S. Nakamura, H. Harada, T. Katoh, Z. Ogata, J. Nucl. Sci. Techn. 33 (1996) 283

Peak area of 536 and 668 keV $^{130}I(\beta-)^{130}Xe$ decay gamma rays during activation and decay *F*=83% (fixed), *R*_m=0.6, λ_m =1.344E-3 χ^2 =4.5 Literature

Uncertainty budget

ISO Guide to the expression of Uncertainty in Measurement (GUM)

$$\sigma_{\gamma x} = \sigma_{\gamma c} \frac{n_c}{n_x} \frac{A_{\gamma x} / \varepsilon(E_{\gamma x}) / f(E_{\gamma x})}{A_{\gamma c} / \varepsilon(E_{\gamma c}) / f(E_{\gamma c})}$$

- Advantages of the relative internal calibration method
 - Absolute flux, inhomogeneity of sample and flux, multiple scattering (build up effect), dead time, energy distribution of flux, sample weight cancel out
- Uncertainty components for partial gamma ray cross sections
 - Uncertainty $(1\sigma, \delta A)$ of the are A is obtained from peak fitting with Hypermet PC
 - Uncertainty efficiency ratio can be obtained from the correlation matrix of the efficiency fit. Relative uncertainty of the efficiency is about 0,5-1% in the 0.1-10 MeV range.
 - Gamma and neutron self absorption is calculated with numerical integration over simple shape of samples. For thin samples they are close to 1 and the estimated uncertainty is 5% of the difference from 1

A nice summary: Zs. Révay, Nucl. Instr. & Methods A 564 (4-6), 688-697 (2006)

Uncertainty calculation example

Continuous beam

$$\sigma_{\gamma x}(1 \pm \delta \sigma_{\gamma x}) = \sigma_{\gamma c} \frac{A_{\gamma x}}{A_{\gamma c}} \frac{n_c \varepsilon(E_{\gamma c}) f(E_{\gamma c})}{n_x \varepsilon(E_{\gamma x}) f(E_{\gamma x})}.$$

$$\left(1\pm\sqrt{(\delta A_{\mu})^{2}+(\delta A_{\mu})^{2}+(\delta \varepsilon(E_{\mu}))^{2}+(\delta \varepsilon(E_{\mu}))^{2}-2\delta \operatorname{cov}(\varepsilon(E_{\mu}),\varepsilon(E_{\mu}))+(\delta \sigma_{c})^{2}+\left(\delta \frac{\varepsilon(E_{\mu})}{\varepsilon(E_{\mu})}\right)^{2}\right)$$

- •Without correlation we get overestimate of the uncertainty
- •For sum of partial cross sections the uncertainty calculus must be used, if we use simple re-normalization than the correlation is neglected
- •For calculus of decay partial gamma-ray cross sections and uncertainties related to chopper methodology please see
- Szentmiklósi, L., Z. Révay and T. Belgya (2006). *Measurement of partial gamma-ray production cross-sections and* k_0 *factors for radionuclides with chopped-beam PGAA*, Nucl. Instr. and Methods A **564**: 655-661.

Selected recent publications

Handbook of PGAA with neutron beams (Eds. G.L. Molnár, Kluwer Academic Publisher), 2004 99 Tc(n, γ):

G.L. Molnár et al., Radiochim. Acta **90** (2002) 479-482, T. Belgya et al., Porc. of the enlargement workshop on Neutron Measurements and Evaluations for Applications (Eds. A.J.M. Plompen), 5-8 Nov. 2003, Budapest, Hungary, EUR Report 21100 EN, Luxembourg, ISBN 92-894-6041-5, 2004, 2004, pp. 159-163.

^{127,129}I(n, γ):

Belgya, T., G. L. Molnár, Z. Révay and J. Weil (2005). *Determination of thermal neutron capture cross sections using cold neutron beams*, 10th International Conference on Nuclear Data for Science and Technology, September 26 - October 1, 2004, Santa Fe, New Mexico, AIP 769, pp. 744-747

²³⁸U(n, γ):

G.L. Molnár, Zs. Révay and T. Belgya, Nucl. Instr. Methods B 213, 389 (2004)

²⁰⁹Bi(n, γ)

Borella, A., A. Moens, P. Schillebeeckx, R. Van Bijlen, G. L. Molnár, et al. (2005). *Determination of the 209Bi(n,g) capture cross section at a cold neutron beam*, Journal of Radioanalytical and Nuclear Chemistry **265**(2): 267-271.

Te isotopes:

I. Tomandl et al., Phys. Rev. C 68 (2003) 067602

Pb in progress

¹⁵N, ²⁰⁸Pb, ²⁷AI:

Belgya, T. (2006). Improved accuracy of gamma-ray intensities from basic principles for the calibration reaction 14N(n,g)15N, Physical Review C 74: 024603; Belgya, T. (2007). New gamma-ray intensities for the 14N(n,g)15N high energy standard and its influence on PGAA and on nuclear quantities, Journal of Radioanalytical and Nuclear Chemistry: accepted

Pd:

Firestone, R. B., M. Kritcka, D. P. McNabb, B. W. Sleaford, U. Agvaanluvsan, et al. (2005). *Thermal neutron capture cross section of the palladium isotopes*, 12nd international Conference on Capture Gamma-Ray Spectroscopy and Related Topics, September 4-9, 2005 University of Notre Dame, Indiana, USA, API, pp.

Absolute FEP efficiency

Fig. 4. Absolute full-energy peak efficiency (left-hand scale) as a function of γ -ray energy for the Budapest detector. The residuals of the fit to the data points (experimental value minus fitted value divided by the experimental uncertainty) are shown at the top of the figure. The dashed curve represents the relative standard uncertainties for the fitted curve (in percent, righthand scale).

2002_NIMA_481_365-377_Baglin_66Ga

⁹⁹Tc 0.5 g sample (n,γ) spectrum

⁹⁹Tc (n,γ γ) prompt-coincidence spectrum

Partial γ-ray production cross sections of capture and decay lines for a ⁹⁹Tc target

E_{γ}	Origin	\mathbf{P}_{γ}	$\sigma_\gamma^{\ a}$	Sensitivity
(keV)		(y/100 captures	(b)	(cps/mg)
		or decays)		
172.1	99 Tc(n, γ)	67 <u>+</u> 6	16.61 <u>+</u> 0.15	3.0
223.4	99 Tc(n, γ)	6.1 <u>±</u> 0.6	1.472±0.013	0.24
263.5	99 Tc(n, γ)	5.9 <u>+</u> 0.5	1.425±0.012	0.21
539.5	100 Tc β	6.6 ± 0.5^{b}	1.604 <u>+</u> 0.014	0.14
590.7	100 Tc β	5.3 <u>+</u> 0.5	1.296 <u>+</u> 0.011	0.10
89.5	⁹⁹ Tc β ⁻	$(6.5\pm1.5)\times10^{-4}$ c		4.3×10^{-3}

G.L. Molnár, T. Belgya, Zs. Révay and S.M.Qaim, Radiochim. Acta 90, 479-482 (2002)

Inferred total thermal-neutron capture cross section of ⁹⁹Tc

Method	Basis	σ (b)	Comment		
¹⁰⁰ Tc(β ⁻) ¹⁰⁰ Ru	539 γ	24.7±2.3	with $P\gamma$ Furutaka et al.		
	591 γ	23.9 ±1.8			
	Average	24.3 ±2.2	unweighted average		
⁹⁹ Tc(n,γ) ¹⁰⁰ Tc	Σ σγ g.s.	21.21±0.17	lower limit		
Literature: EXFOR database					
H. Pomerance 1975		19±2 b	pile oscillator		
R.B. Tattersall 1960		16 ±7 b	pile oscillator		
N.J. Pattenden 1958		25 ±2 b	transmission		
M. Lucas 1977		20 ±2 b	mass spectrometer		
V.V. Ovechkin 1973		24 ±4 b	activation		
H. Harada 1995		22.9 ±2.6 b	activation		
Mughabgab 2003		20 ±1	evaluation INDC(NDS)-440		

Parameters of the NIPS station

- Neutron beam cross section:
- Thermal-equivalent flux at target: ≈3×10⁷·cm⁻²s⁻¹
- Vacuum in target chamber (optional): ≈1 mbar
- Form of target at room temperature: Solid, powder, liquid, gas in
- Largest target dimensions:
- γ-ray detector No.1
- Relative efficiency:
- FWHM:
- γ -ray detector No 2.
- Relative efficiency:
- FWHM:
- γ-ray detector No 3.
- FWHM:

):≈1 mbar Solid powdor ligu

 $2.5 \times 2.5 \text{ cm}^2$

- pressure container
- $1.5 \times 1.5 \times 3.5 \text{ cm}^3$
- n-type coax. HPGe
- 13% at 1332 keV
- 1.8 keV at 1332 keV
- n-type coax. HPGe
- 30% at 1332 keV
- 1.9 keV at 1332 keV
- Planar HPGe
- 0.6 keV at 122 keV

Parameters of the PGAA station

- beam cross section:
- Thermal-equivalent flux at target:
- Vacuum in target chamber (optional): ≈ 1
- Form of target at room temperature:
- Largest target dimensions:
- γ-ray detector
- Distance from target to detector:
- Relative efficiency:
- FWHM:
- Compton suppression enhancement:

 $< 2 \times 2$ cm² $\approx 5 \times 10^7 \text{ cm}^{-2} \text{s}^{-1}$ ≈1 mbar Solid, powder, liquid, gas in pressure container $4 \times 4 \times 10 \text{ cm}^3$ n-type coax. HPGe, with BGO shield 23.5 cm 25% at 1332 keV 1.8 keV at 1332 keV \approx 5 (1332 keV) to \approx 40 (7000 keV)

What's NIPS?

- Neutron Induced Prompt gamma-ray Spectroscopy
- Intent: To build a multipurpose experimental station
 - Close detector geometry (2.5 cm)
 - Place for more detectors (\geq 3)
 - Good shielding (⁶Li-poly)
 - Multiparameter data acquisition

Publications

- •P.P. Ember, T. Belgya, G.L. Molnár, *Improvement of capabilities* of PGAA by coincidence techniques, Appl. Radiat. Isot. 56 (2002) 535
- •P.P. Ember, T. Belgya, J.L. Weil, G.L. Molnár, *Coincidence measurement setup for PGAA and nuclear sructure studies*, Appl. Radiat. Isot. (2002) In print
- •T. Belgya, Zs. Révay, L. Szentmiklósi, M. Lakatos, J.L. Weil, *The application of a digital specrometer in PGAA*, IRRMA-V (2002)
- T. Belgya, G.L. Molnár, Accurate relative gamma-ray intensities from neutron capture on natural chromium, IRRMA-V (2002)
 G.L. Molnár, T. Belgya, Zs. Révay, S.M. Qaim, Partial and total neutron capture cross section for non-destructive assay and transmutation monitoring of ⁹⁹Tc, Radiochemia Acta, submitted

The ⁹⁹Tc

- One of the most important LLFF
- ⁹⁹Tc half-life: 210 000 years
- cumulative fission yield in reactor: 6.1%
- The (n,γ) reaction can efficiently destroy the Tc waste

⁹⁹Tc transmutation

- TARC experiments at CERN to measure transmutation rates
- A. Abanades et al., Nucl. Instr. and Methods A 478 (2002) 577–730

Carlo Rubbia's TARC (Transmutation by Adiabatic Resonance Crossing) experiment at CERN. Accelerator-driven transmutation has emerged as a potentially complementary technology for radioactive waste handling by transmuting the longestlived radioactive isotopes into shortlived or stable ones.

Scheme of transmuting ⁹⁹Tc

⁹⁹Tc measurements at our PGAA & NIPS facilities

✓ NH₄TcO₄
 ✓ ⁹⁹Tc(n,γ)
 ✓ ⁹⁹Tc(n,γ)

PGAA (partial cross section) PGAA (rel. γ intensities) Chopped beam PGAA (¹⁰⁰Tc β ⁻ decay rel. γ intensities)

Evaluation is in progress:

- ⁹⁹Tc(n,γ γ)
- ⁹⁹Tc(d,p)¹⁰⁰Tc

Coincidence (decay scheme) High resolution proton spectrum (level scheme) measured at , TU Munich

¹⁰⁰Tc levels observed in (d,p) spectrum

Quantities we can measure and their role in nuclear waste transmutation

Partial gamma-ray cross sections

on-line transmutation yield measurement non-destructive assay of waste by PGAA

- •Decay gamma-ray partial cross sections on- and off-line transmutation yield measurement
- •Thermal neutron capture cross sections transmutation yield calculations normalization point for differential cross section experiments (e.g. GELINA, Geel, Belgium, n-TOF, CERN)

Our goal is to measure these quantities with high precision

⁹⁹Tc (d,p) spectrum (München tandem)

Why to measure nuclear waste, structural material capture cross sections?

- Waste is generated by power production
- Safe disposal \rightarrow transmutation by ADS
- Problematic wastes are the Long-Lived Fission Fragments or LLFFs (⁹⁹Tc, ¹²⁹I,...) and minor actinides
- Structural materials are parts of ADS (Bi, Pb, ...)
- For optimization of transmutation yields, control of transmutation and detection of various isotopes in waste:

Accurate γ-ray yields and thermal neutron cross sections are needed

Objectives

Edited by Gebor

HANDBOOK OF PROMPT GAMMA ACTIVATION ANALYSIS

WITH NEUTRON BEAMS

Editor: G. L. Molnár[†]

1. Principles of the PGAA method (Zs. Révay, T. Belgya)

2. Beams and Facilities (R.M. Lindstrom, Zs. Révay)

3. Samples and Standards (R.M. Lindstrom, Ch. Yonezawa)

4. Gamma-Ray Spectrometry (T. Belgya, Zs. Révay)

5. Quantitative Analysis (Ch. Yonezawa)

6. Applications of PGAA with Neutron Beams (D.L. Anderson, Zs. Kasztovszky)

7. Appendices Reference Data (R.B. Firestone, G.L. Molnár, Zs. Révay)

+ CD supplement General precision 1-5% for σ_{ν}

$NH_4TcO_4(n,\gamma)$ spectrum, H comparator

Precision of internal σ_{γ} calibration for enriched samples

$$\sigma_{\gamma x} = \sigma_{\gamma c} \quad \frac{n_c}{n_x} \quad \frac{A_{\gamma x}}{A_{\gamma c}} \quad \frac{\varepsilon(E_{\gamma c})}{\varepsilon(E_{\gamma x})} \quad \frac{f(E_{\gamma c})}{f(E_{\gamma x})}$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5$$

	Factor number	Type of error
1.	Derived from primary (H) or secondary (Cl, N) standards (table or dedicated experiment)	Systematic (~ 1%)
2.	Exactly 1	0
3.	Uncertainty can be decreased by time or by count rate	Statistical
4.	Uncertainty can be decreased to systematic level (Most important term which can be minimized by improving standards)	Statistical + systematic, 0 at pivot (= $E_{\gamma c}$) point, (~ 1%)
5.	Can be measured or calculated using attenuation models (thin sample minimizes the uncertainty)	Statistical + systematic or systematic (~ 1%)