

# Compound nuclear reactions induced by neutrons and the R-matrix formalism

Frank Gunsing,

CEA/Saclay DSM / IRFU / SPhN F - 91911 Gif-sur-Yvette, France

gunsing@cea.fr

1



irfu saclay

### Neutron-nucleus reactions

Reaction: • X +  $a \rightarrow Y + b$ • X(a,b)Y



### **Cross section:**

**Cross section:** function of the kinetic energy of the particle a  $\sigma(E_a) = \int \int \frac{d^2\sigma(E_a, E_b, \Omega)}{dE_b d\Omega} dE_b d\Omega$ 

#### Differential cross section:

function of the kinetic energy of the particle a and function of the kinetic energy or the angle of the particle b

$$rac{d\sigma(E_a,E_b)}{dE_b} = rac{d\sigma(E_a,\Omega)}{d\Omega}$$

# 2)

#### Double differential cross section:

function of the kinetic energy of the particle a and function of the kinetic energy **and** the angle of the particle b

 $rac{d^2\sigma(E_a,E_b,\Omega)}{dE_bd\Omega}$ 















![](_page_9_Figure_0.jpeg)

### Decay of a nuclear state

![](_page_9_Figure_2.jpeg)

![](_page_10_Picture_0.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_13_Picture_0.jpeg)

(shell model and other states)

![](_page_13_Figure_2.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_0.jpeg)

# Statistical model

The nucleus at energies around S<sub>n</sub> can be described by the Gaussian Orthogonal Ensemble (GOE)

The matrix elements governing the nuclear transitions are random vairables with a Gaussian distribution.

- Consequences:
  - The partial width have a Porter-Thomas distribution
  - The spacing of levels with the same J<sup>π</sup> have approximately a Wigner distribution.

![](_page_19_Figure_7.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

## Spacing distribution of two consecutive levels

![](_page_21_Figure_2.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

CERN, workshop EFNUDAT, 30-8-2010

![](_page_25_Picture_0.jpeg)

### Compound nucleus reactions

![](_page_25_Figure_2.jpeg)

![](_page_26_Figure_0.jpeg)

- calculate potential (optical model calculations, smooth cross section)
- use eigenstates (R-matrix, resonances)

![](_page_27_Figure_0.jpeg)

![](_page_28_Picture_0.jpeg)

External region: solve Schrödinger equation

central force, separate radial and angular parts.

$$\psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$

solution: solve Schrödinger equation of relative motion:

- Coulomb functions
- special case of neutron particles (neutrons): **Bessel functions**

Internal region: Schrödinger equation cannot be solved directly solution: expand the wave function as a linear combination of its eigenstates. using the R-matrix:

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E}$$

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

### The R-matrix formalism

The wave function of the system is a superposition of incoming and outgoing waves:

$$\Psi = \sum_{c} y_c \mathcal{I}_c + \sum_{c'} x_{c'} \mathcal{O}'_c$$

Incoming and outgoing wavefunctions have form:

$$\mathcal{I}_c = I_c r^{-1} \varphi_c i^{\ell} Y_{m_{\ell}}^{\ell}(\theta, \phi) / \sqrt{v_c}$$
$$\mathcal{O}_c = O_c r^{-1} \varphi_c i^{\ell} Y_{m_{\ell}}^{\ell}(\theta, \phi) / \sqrt{v_c}$$

The physical interaction is included in the collision matrix **U**:

$$x_{c'} \equiv -\sum_{c} U_{c'c} y_c$$

The wave function depends on the R-matrix, which depends on the widths and levels of the eigenstates.

$$\Psi = \Psi(R_{cc'})$$
$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E}$$

### The R-matrix formalism

The relation between the R-matrix and the collision matrix:

$$\mathbf{U} = \mathbf{\Omega} \mathbf{P}^{1/2} [\mathbf{1} - \mathbf{R} (\mathbf{L} - \mathbf{B})]^{-1} [\mathbf{1} - \mathbf{R} (\mathbf{L}^* - \mathbf{B})] \mathbf{P}^{-1/2} \mathbf{\Omega}$$
  
with:  $L_c = S_c + iP_c = \left(\frac{\rho}{O_c} \frac{dO_c}{d\rho}\right)_{r=a_c}$ 

The relation between the collision matrix and cross sections:

channel to one other channel:  $\sigma_{cc'} = \pi \lambda_c^2 |\delta_{c'c} - U_{c'c}|^2$ 

channel to any other channel:

$$\sigma_{cr} = \pi \lambda_c^2 (1 - |U_{cc}|^2)$$

channel to same channel:

$$\sigma_{cc} = \pi \lambda_c^2 |1 - U_{cc}|^2$$

channel to any channel (total):

$$\sigma_{c,T} = \sigma_c = 2\pi\lambda_c^2(1 - \operatorname{Re} U_{cc})$$

Frank Gunsing, CEA/Saclay

![](_page_33_Figure_0.jpeg)

### The R-matrix formalism

#### saclay

œ

irfu

The Breit-Wigner Single Level approximation: total cross section:

$$\sigma_c = \pi \lambda_c^2 g_c \left( 4 \sin^2 \phi_c + \frac{\Gamma_\lambda \Gamma_{\lambda c} \cos 2\phi_c + 2(E - E_\lambda - \Delta_\lambda) \Gamma_{\lambda c} \sin 2\phi_c}{(E - E_\lambda - \Delta_\lambda)^2 + \Gamma_\lambda^2/4} \right)$$

neutron channel: 
$$c = n$$
  
only capture, scattering, fission:  $\Gamma_{\lambda} = \Gamma = \Gamma_n + \Gamma_{\gamma} + \Gamma_f$   
other approximations:  $\ell = 0$   $\cos \phi_c = 1$   $\sin \phi_c = \rho = ka_c$   $\Delta_{\lambda} = 0$ 

total cross section:

$$\sigma_T(E) = 4\pi R'^2 + \pi \lambda^2 g \left( \frac{4\Gamma_n(E - E_0)R'/\lambda + \Gamma_n^2 + \Gamma_n\Gamma_\gamma + \Gamma_n\Gamma_f}{(E - E_0)^2 + (\Gamma_n + \Gamma_\gamma + \Gamma_f +)^2/4} \right)$$
  
total width

### The R-matrix formalism

#### The Reich-Moore approximation:

Use the fact that there are many photon channels, with Gaussian distributed amplitudes with zero mean:

$$<\gamma_{\lambda c}\gamma_{\mu c}>=\gamma_{\lambda c}^2\delta_{\lambda\mu}$$

The sum over the amplitudes of the photon channels becomes then:

$$\sum_{c \in \text{photon}} \gamma_{\lambda c} \gamma_{\mu c} = \sum_{c \in \text{photon}} \gamma_{\lambda c}^2 \delta_{\lambda \mu} = \Gamma_{\lambda \gamma} \delta_{\lambda \mu}$$

Then photon channels can be eliminated in the R-matrix:

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E - i\Gamma_{\lambda \gamma}/2} \qquad c \notin \text{photon}$$

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

Frank Gunsing, CEA/Saclay

![](_page_45_Figure_0.jpeg)

The resolution can be expressed equivalenty in time, distance and energy:

$$R_t(\delta t)d\delta t = R_L(\delta L)d\delta L = R_E(\delta E)d\delta E$$

# Comparing neutron time-of-flight facilities

#### facility characteristics

- instantaneous flux (neutrons per pulse)
- average flux (neutrons per second)
- resolution (resonance shape analysis)
- background

#### facility equipment

- detectors
- samples
- data acquisition

irfu

# Comparing some neutron time-of-flight facilities

œ

#### saclay

| Facility     | Location                   | Particle | Beam<br>energy<br>(MeV) | Neutron<br>target | Pulse<br>width<br>(ns) | Beam<br>power<br>(kW) | Pulse<br>frequency<br>(Hz) | Flight path<br>lengths<br>(m) | Neutron<br>production<br>(n/pulse) |
|--------------|----------------------------|----------|-------------------------|-------------------|------------------------|-----------------------|----------------------------|-------------------------------|------------------------------------|
| RPI          | RPI, Troy, USA             | e-       | 60                      | Та                | 5                      | 0.6                   | 500                        | 15–250                        | 3.6 × 10 <sup>9</sup>              |
|              |                            | e-       | 60                      | Та                | 5,000                  | >10                   | 300                        | 15, 25                        | $4.8 \times 10^{11}$               |
| ORELA        | ORNL, Oak Ridge, USA       | e-       | 180                     | Та                | 2–30                   | 60                    | 12–1,000                   | 9–200                         | 1 × 10 <sup>12</sup>               |
| GELINA       | EC-JRC-IRMM, Geel, Belgium | e-       | 100                     | U                 | 1                      | 10                    | 40-800                     | 5–400                         | 4.3 × 10 <sup>10</sup>             |
| nELBE        | FZD, Rossendorf, Germany   | e-       | 40                      | L-Pb              | 0.01                   | 40                    | 500,000                    | 4                             | 5.4 × 10 <sup>7</sup>              |
| IREN         | JINR, Dubna, Russia        | e-       | 30                      | W                 | 100                    | 0.42                  | 50                         | 10–750                        | 7.7 × 10 <sup>10</sup>             |
| PNF          | PAL, Pohang, Korea         | e-       | 75                      | Та                | 2,000                  | 0.09                  | 12                         | 11                            | $1.7 \times 10^{10}$               |
| KURRI        | Kumatori Japan             | e-       | 46                      | Та                | 2                      | 0.046                 | 300                        | 10, 13, 24                    | 2 × 10 <sup>9</sup>                |
|              |                            | e-       | 30                      | Та                | 4,000                  | 6                     | 100                        | 10, 13, 24                    | 8 × 10 <sup>10</sup>               |
| LANSCE-MLNSC | LANL, Los Alamos, USA      | р        | 800                     | W                 | 135                    | 80                    | 20                         | 7–60                          | $7 \times 10^{14}$                 |
| LANSCE-WNR   | LANL, Los Alamos, USA      | р        | 800                     | W                 | 0.2                    | 1.44                  | 13,900                     | 8–90                          | 8 × 10 <sup>9</sup>                |
| n_TOF        | CERN, Geneva, Switzerland  | р        | 20,000                  | Pb                | 6                      | 10                    | 0.4                        | 185                           | 2 × 10 <sup>15</sup>               |
| MLF-NNRI     | J-PARC, Tokai, Japan       | р        | 3,000                   | Hg                | 1,000                  | 1,000                 | 25                         | 30                            | $1.2 \times 10^{17}$               |

From: D. G. Cacuci (ed.), Handbook of Nuclear Engineering, R. C. Block, Y. Danon, F. Gunsing, R. C. Haight Chapter: Neutron Cross Section Measurements

![](_page_48_Picture_0.jpeg)

# Thank you for your attention.