

CERN 29.8.-2.9. 2010 – EFNUDAT workshop

Advances in the analysis of resonance cross section data

S. Kopecky, P. Schillebeeckx M. Moxon, I. Sirakov

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

http://irmm.jrc.ec.europa.eu/

CERN 29.8.-2.9. 2010 – EFNUDAT workshop

URR (I. Sirakov visitor 2 x 3 months)

•ENDF-6 compatible evaluation procedures optical model calculation

Topics

•Self shielding and multiple scattering corrections

RRR (M. Moxon visitor 1.5 month)

•Varying Weighting function according to resonance strength

- Corrections for powder samples
- •Investigation of Multiple Scattering Corrections (collaboration with KIT)

URR Cross Section

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

$$\overline{\sigma}_{cc'} = \overline{\sigma}_{cc'}^{se} \delta_{cc'} + \frac{\pi}{k_c^2} g_c \frac{T_c T_{c'}}{T} F_{cc'}$$

Fluctuation factor

- Shape elastic scattering cross section
- ENDF-6 compatibility lead to approximations

 $T_{c}, T_{c'}$ Transmission coefficient

 $T_{\gamma}^{J^{\pi}}(E) = T_{\gamma^{0}}^{J^{\pi}} f_{T_{\gamma}}^{J^{\pi}}(E)$

Transmission factors and shape elastic cross section calculated by optical model

S_I(E) Strength function R'(E) scattering radius

Adjustment of $S_{I}(0)$ and T_{γ} to experimental cross section data

URR Th-232

4

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Sirakov et al., Annals of Nuclear Energy 35 (2008) 128

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

URR – ENDF-6

URR - MCNP-Flux Geometry

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Comparison SESH-MCNP

⇒Tested influence of experimental conditions on shelf-shielding and multiple scattering

7

\Rightarrow SESH & MCNP similar results

⇒ Procedures established to derive corrections and fitting of average parameters

Weighting Function

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Reliable WF's can be obtained by Monte Carlo simulations provided that the geometry input reflects the experimental conditions, i.e. accounts for γ -ray transport in sample (started with Perey et al. at ORELA)

⇒ Weak resonance : WF1
⇒ Strong resonance : WF2
(Affects also the observed shape)

Procedure : (1) Apply WF1 on experimental data

(2) Correction factor on calculated yield

UROPEAN COMMISSION Verification of WF and normalization by experiment 1.15 keV of ⁵⁶Fe + n

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

 $\Gamma_{\rm n}$ = 61.7 ± 0.9 meV Γ_{γ} = 574 meV

Normalization capture data: 1.15 keV of ⁵⁶Fe + n

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

10

Sample	Length / m	Normalization	
	REFIT	REFIT	SAMMY
	MCNP resolution	MCNP resolution	Analytical resolution
^{nat} Fe	58.5660 ± 0.0004	28.16 ± 0.25	27.80 ± 0.25
^{nat} Fe / ^{nat} ₩	58.5670 ± 0.0004	27.88 ± 0.25	28.50 ± 0.25
^{nat} Fe / ^{nat} Zr	58.5671 ± 0.0004	27.68 ± 0.25	28.10 ± 0.25
^{nat} W / ^{nat} Fe	58.5678 ± 0.0004	27.41 ± 0.25	28.30 ± 0.25
^{nat} Zr / ^{nat} Fe	58.5674 ± 0.0004	27.19 ± 0.25	27.70 ± 0.25
Average	58.5671	27.67	28.08
Stdev	0.0007	0.38	0.34
Stdev (%)	0.0011	1.4	1.2

WF calculated with γ -rays distributed in Fe

Correction Factor

Influence of K_c on normalization

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Powder sample

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Probability that a neutron "sees" n particle, given by Poisson-statistics

Influence of Power Sample on Transmission

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Experminentally observed effects

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

CERN 29.8.-2.9. 2010 – EFNUDAT workshop

Sample dimensions are determined by a 2D-optical scanning system including a height measurement

- \Rightarrow Area (also for irregular shapes)
- \Rightarrow Circularity of a disc
- \Rightarrow Height profile

$$T_{exp} \leftrightarrow e^{-n\sigma_{tot}}$$

$$Y_{exp} \leftrightarrow \left(1 - e^{-n\sigma_{tot}}\right) \frac{\sigma_{\gamma}}{\sigma_{tot}} + \dots$$

n : areal density $n = \frac{N_A}{m_X} \frac{\text{weight}}{\text{area}}$ $\Rightarrow \text{ sample dimensions}$

Sample characterization : homogeneity

¹⁸⁶W (metal disc)

input to REFIT

18

4.0

Multiple Scattering

Multiple Scattering

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Mn-55 Multiple Scattering

21

CERN 29.8.-2.9. 2010 - EFNUDAT workshop

Conclusions

- Procedures and Programs to derive average parameters and their covariance matrix in the URR
- ⇒ Parameters are compatible with ENDF-6 procedures
- ⇒ NJOY has been modified to be ENDF-6 compatible
- programs and procedures have been established to calculate self-shielding and multiple scattering in the URR

Conclusions

Modification to RSA REFIT

- ⇒ Corrections of WF depending on the resonance strength
- ⇒ Correction due to powder samples

⇒ Investigation of Multiple Scattering in RSA

⇒ Started project to incorporate MC approach (EFNUDAT, Sept. 2010)