

New experimental measurement of the $^{24,25,26}Mg(n,\gamma)$ reaction cross-section at n_TOF

C. Massimi on behalf of the n_TOF collaboration*)
*) www.cern.ch/n_TOF

EFNUDAT workshop, CERN, 30 August – 2 September

- Introduction and Motivation
- Mg in literature
- Measurement at n_TOF: Laboratory and detectors
- Data analysis
- Preliminary results
- Conclusions

STUD PLORUM

Introduction

Nuclear astrophysics:

nucleosynthesis of elements

- 1. Big Bang (H, D, ^{3,4}He, ^{6,7}Li)
- 2. Nuclear fusion (A<60)
- 3. Neutron capture (A>60)

Depending on the stellar conditions

- The slow neutron-capture process (s-process): low neutron density → neuton capture time longer than βdecay half-lives
- The rapid neutron-capture process (r-process)

Solar system elemental abundances

Introduction

The s-process

- is responsible for the production of about half of the elemental abundances beyond Iron that we observe today.
- Most of the s-process isotopes between iron and strontium (60 < A < 90) are produced in massive stars (M > 10 - 12 M_{sun}) where the ²²Ne(α,n)²⁵Mg reaction is the main neutron source.
- Beyond strontium, the s-process abundances are mostly produced in low mass Asymptotic Giant Branch stars (AGB stars, 1.2M_{sun}<M<3M_{sun}), where the neutrons are provided by the ¹³C(α,n)¹⁶O reaction and by the partial activation of the ²²Ne(α,n)²⁵Mg reaction.

The **reaction path** follows the **stability valley** → the resulting **abundances** are determined by the respective neutron-capture **cross-section**

Introduction

The s-process and the capture cross-section

- Cross-section data is the most important nuclear physics input for s-process studies: Reaction rate = n <σv>
- Neutron energy: Maxwell-Boltzmann distribution
- Laboratory measurements are required in the energy range $0.1 < E_n < 300 \text{ keV}$.

Example: $\rightarrow E_n = kT$ (e. g. T=3x10⁸ K $\rightarrow E_n = 26 \text{ keV}$)

n + ²⁵Mg cross-sections

Motivations

The s-process and the Mg(n,γ) reaction

- ²⁵Mg is the most important neutron poison due to neutron capture on ²⁵Mg in competition with neutron capture on ⁵⁶Fe that is the basic sprocess seed for the production of heavy isotopes.
- For this reason, a precise knowledge of the ²⁵Mg(n, γ)²⁶Mg cross section is required to properly simulate s-process nucleosynthesis in stars.
- Several attempts to determine the rate for the reaction ²²Ne(α,n)²⁵Mg either through direct ²²Ne(α,n)²⁵Mg measurement or indirectly, via ²⁶Mg(γ,n)²⁵Mg or charged particle transfer reactions. In both cases the cross-section is very small in the energy range of interest→ No results have been reported.
- The main uncertainty of the reaction rate comes from the poorly known property of the states in ²⁶Mg. Information can come from neutron measurements (knowledge of J^π for the ²⁶Mg states).

The **small**, resonance dominated, **cross-section** of light nuclei are **difficult to measure:**

- Few measurement are present in literature
- Capture data suffer from severe systematic uncertainties
- The **available** experimental **data** for ^{24,25,26}Mg are essentially based on a time-of-flight measurement performed at ORELA:
 - very high-resolution transmission measurement (200-m flight path, metallic Mg sample, plastic scintillator)
 - high-resolution capture measurement (40-m flight path, 97.9% enriched sample, fluorocarbon scintillators)
- The thermal-neutron capture cross section was measured at the Los Alamos Omega West reactor (by neutron activation)

Mg data in literature

Evaluations:

- Existing evaluations are based on JENDL3.3 (by T. Asami)
- JENDL 4 (2010) is not updated
- Resonance parameters in resolve resonance region are taken from BNL (Mughabghab) and negative resonances were added to reproduce the measured thermal cross-section

Sizeable discrepancies between Asami and Koehler

Evaluation does not consider: - the photoneutron cross-section measurement ${}^{26}Mg(\gamma,n){}^{25}Mg$ by Berman *et al.*(PRL 1969), $\rightarrow J^{\pi}$ - a recent work by P. E. Koehler (PRC, 2002) \rightarrow R-matrix analysis of existing measurements

	Thermal-neutron cross section:EvaluationMeasurements			
²⁴ Mg	50 mb	$54.1\pm1.3~\text{mb}$		
²⁵ Mg	190 mb	$200\pm3~\text{mb}$		
²⁶ Mg	38 mb	$39.0\pm0.8~\text{mb}$		

Aim of this capture measurement:

- neutron capture cross-section measurements were performed at n_TOF (Phase I) to improve (n, γ) cross-section of the Mg isotopes.
- **Resonance shape analysis** (RSA) to parameterize the cross sections in terms of the R-matrix formalism
- Determination of the **Maxwellian-averaged capture cross-section**.

Simultaneous RSA on:

- capture data from the measurement performed at the n_TOF facility at CERN and
- transmission data from the ORELA facility.

n_TOF facility at CERN

Pulsed neutron source: spallation of 20-GeV/c protons from CERN PS

- Neutron-producing target: 80x80x60 cm lead block
- Cooling and moderation: 5-cm water
- Flight path length: 180 m
- protons per burst: 7x10¹²
- Proton burst duration: 6 ns
- Neutrons per protons ≈ 300

High neutron flux	10 ⁵ n/cm²/pulse	
Wide energy range	1 eV < E _n < 250 MeV	
Good energy resolution	$\Delta E / E \sim 10^{-4}$ (up to keV)	
Low repetition rate	~ 0.25 Hz	

n_TOF facility at CERN

2 collimators, 3 shielding walls, 1 sweeping magnet

High neutron flux	10 ⁵ n/cm²/pulse	
Wide energy range	1 eV < E _n < 250 MeV	
Good energy resolution	$\Delta E / E \sim 10^{-4}$ (up to keV)	
Low repetition rate	~ 0.25 Hz	

Capture detectors

Sample holder

Flux detectors

Acquisition system

n_TOF DAQ based on Flash ADC

- <u>500 MSample/s (500 MHz bandwidth), 16 MB</u> <u>buffer memory</u>
- <u>Zero Suppression software</u>
- <u>Commercial Aqiris</u>

Offline Analysis of signals to deduce the information on tof, amplitude, ...

- single signal
- fitting procedure in case of signal pile-up

Mg samples 2.2-cm in diameter. Oxide sample sealed in an aluminum canning.

Sample	Isotopic abundance of:			Mass	Areal	Туре
ID	²⁴ Mg	²⁵ Mg	²⁶ Mg	(g)	Density (at/b)	
²⁴ Mg	78.7%	10.13%	11.17%	5.2393	0.03415	Metallic
²⁵ Mg	3.05%	95.20%	1.20%	3.1924	0.01234	Oxide
²⁶ Mg	2.46%	1.28%	96.26%	3.2301	0.012189	Oxide

The capture yield

The counts recorded by the capture detector, the C_6D_6 , are related to the capture yield Y_{γ} (the fraction of neutron beam that undergoes capture reactions):

$$\boldsymbol{C}_{\boldsymbol{\gamma}} = \boldsymbol{\epsilon}_{\boldsymbol{\gamma}} \times \boldsymbol{Y}_{\boldsymbol{\gamma}} \times \boldsymbol{A} \times \boldsymbol{\phi}_{\boldsymbol{n}}$$

- $> \phi_n$ neutron flux
- ϵ_{γ} detection efficiency
- A effective area
- \mathbf{Y}_{γ} capture yield

The self-shielding corrected yield is related to the capture cross-section:

$$Y_{\gamma} = (1 - e^{-n\sigma_{tot}}) \frac{\sigma_{\gamma}}{\sigma_{tot}}$$

Resonance shape Analysis

The data are fitted using the R-matrix code SAMMY to extract resonance parameters

Preliminary results

- Resonance parameters of the ²⁴Mg(n,γ), ²⁵Mg(n,γ),
 ²⁶Mg(n,γ) reaction cross-sections have been determined.
- Sizable differences have been found respect to the existing evaluation, JENDL4 (2010), resulting in Maxwellian-averaged capture cross-sections (MACS), which are considerably different compared to previous measurements and compilations.
- Studies of the direct capture component demonstrated that this mechanism contributes at most 1 mb to the MACS of each isotope.

- The present (n,γ) measurement improves the cross section data on Mg isotopes.
- From preliminary analyses we find that the MACS of ²⁵Mg isotope is lower than reported previously.
- The contribution of the direct capture mechanism was calculated, it is not negligible.
- The respective changes of the stellar (n, γ) rates for the Mg isotopes are expected to have a significant impact on the neutron balance of the *s* process.

Cristian Massimi Dipartimento di Fisica massimi@bo.infn.it

www.unibo.it

Motivations

The reaction $^{22}Ne(\alpha,n)^{25}Mg$

Element	J ^π
²² Ne	0+
⁴ He	0+

Only **natural-parity** (0⁺, 1⁻, 2⁺) states in ²⁶Mg can participate in the ²²Ne(α ,n)²⁵Mg reaction, so only a subset of ²⁶Mg states in the relevant energy range observed via neutron reactions can contribute to the reaction rate

TOF technique

Energy resolution

