Measurement of the neutron capture cross section of ²⁴¹Am at n_TOF

C. Guerrero¹ on behalf of The n_TOF Collaboration ¹CIEMAT, Madrid (Spain) ²CERN, Geneva (Switzerland)

Final EFNUDAT Workshop 2010, Geneva (Switzerland)

The evaluated ²⁴¹Am(n,γ) cross sections

ENDF Request 75278, 2010-Aug-20,08:24:00

 Relative differences:

 10% @ thermal

 8% @ 1 keV

 3% @ 10 keV

 7% @ 100 keV

 12% @ 500 keV

 40% @ 1MeV

NEA WPEC-26 on ²⁴¹Am

GFR: 8% -> 3% between 200 eV and 2 keV

ADS: 8% -> 3% between 500 eV and 1.4 MeV

CANDIDE: Coordination Action on Nuclear Data for Industrial Development in Europe ²⁴¹Am (n,γ) is within the 11 identified high priority (n,γ) measurements

²⁴¹Am differential s(n,g) measurements in the XXI century

Data from 1980s (RRR & URR) used samples of few grams

"Neutron capture cross section measurements of ²³⁸U, ²⁴¹Am and ²⁴³Am at n_TOF", *CERN-INTC-2009-025/INTC-P-269* Spokespersons: D. Cano-Ott (CIEMAT) and F. Gunsing (CEA), Technical Coordinator: V. Vlachoudis (CERN)

The measurements will be performed combining for the first time the TAC and 2xC6D6:

- 1. Reduction of systematic errors
- 2. Study of the complete range between thermal and 1 MeV (already achieved for ²³²Th)
- 3. Extension of the RRR thanks to high statistics of the TAC

y Tecnológicas

"Neutron capture cross section measurements of ²³⁸U, ²⁴¹Am and ²⁴³Am at n_TOF", *CERN-INTC-2009-025/INTC-P-269* Spokespersons: D. Cano-Ott (CIEMAT) and F. Gunsing (CEA), Technical Coordinator: V. Vlachoudis (CERN)

The measurements will be performed combining for the first time the TAC and 2xC6D6:

- 1. Reduction of systematic errors
- 2. Study of the complete range between thermal and 1 MeV (already achieved for ²³²Th)
- 3. Extension of the RRR thanks to high statistics of the TAC

Ciempte Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The n_TOF facility at CERN

The n_TOF facility operates at CERN since 2001 aiming at the measurement of high accuracy neutron induced cross sections. The main advantages with respect to other facilities are:

- Wide energy range in a single shot (thermal to GeV)
- Very high instantaneous intensity
- Large flight path (185 m).
- A new spallation source has been installed in 2009

The experimental area have been upgraded to a Work Sector Type-A (no limitation on sample activity)

Neutron Beam Monitoring:

- MGAS detector with ¹⁰B (thermal to 100 keV) and ²³⁵U (thermal and 5 keV to 1 MeV) samples.

- Silicon Monitor looking at a ⁶Li (thermal to 10 keV) sample.

The n_TOF Total Absorption Calorimeter (TAC)

Detecting capture reactions means to detect the subsequent EM cascade.

It is very well suited for the detection of capture cascades in the measurement of lowmass/radioactive samples is the total absorption technique.

C. Guerrero et al., Nucl. Inst. And Meth. A 608 (2009) 424-433

IEI

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The technique relies in two conditions:

- (i) $\epsilon_{\gamma} \ll 1$ so that at most only one γ -ray per capture cascade is registered,
- (ii) ϵ_{γ} is proportional to the energy of the registered γ -ray: $\epsilon_{\gamma} \approx \alpha E_{\gamma}$.

n such case:
$$\varepsilon_c = 1 - \prod_{j=1}^m (1 - \varepsilon_j) \approx \sum_{j=1}^m \varepsilon_j \approx \alpha E_c$$

R. Plag et al., Nucl. Inst. And Meth. A 496 (2003) 425-436

Improvements from previous measurements: TAC

iem

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

MINISTERIO

INNOVACIÓN

Improvements from previous measurements: TAC

MINISTERIO

DE CIENCIA

E INNOVACIÓN

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

OBIERNO

"The ²⁴¹Am(n, γ) cross section measurement at n TOF"

The ²⁴¹Am sample (3.8 GBq)

The sample (disk-shaped with 12.2 mm diameter) consists on 32.2 mg of ²⁴¹Am oxide embedded in a 305 mg Al_2O_3 matrix and encapsulated in a 0.5 mm thick aluminum canning. The sample is part of a set of samples prepared for IRMM at ITU from material given by CEA for (n, γ) and (n,2n) cross section measurements.

The main actinide impurities are:

²³⁷Np = 2.1% ^{233,236,238}U <0.01 % ^{239,240}Pu <0.2%

The experimental set-up with C₆D₆ detectors

The set-up consists of 2 modified Bicron C_6D_6 detectors, each with a volume of 0,61 l. The front aluminum wall has been removed for reducing the neutron sensitivity.

Calibrations and Monte Carlo simulations

Simulations with Geant4 including the detailed geometry of the set-up are used for:

- Amplitude/Energy calibration
- Calculation of the Pulse height Weighting Functions (ongoing)

MC simulation: Calibration sources on C₆D₆

²⁴¹Am(n,γ) at n_TOF (100 BPD, E_{thr}=280 keV)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas "The ²⁴¹Am(n, γ) cross section measurement at n_TOF"

²⁴¹Am(n,γ) at n_TOF (8000 BPD, E_{thr}=280 keV) $\times 10^{6}$ ²⁴¹Am 5 3 2 Neutron energy $(eV)^{10}$

GOBIERNO DE ESPAÑA E INNOVACIÓN MINISTERIO DE CIENCIA E INNOVACIÓN Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Counts

Cierco te livestigaciones Energéticas, Medicambientales y Tecnológicas
C. Guerrero et al. @ EFNUDAT 2010 "The $^{241}Am(n, \gamma)$ cross section measurement at n_TOF" n_TOF

Preliminary Results: BACKGROUND

²⁴¹Am(n, γ) at n_TOF (100 BPD, E_{thr}=280 keV)

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA E INNOVACIÓN Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Preliminary Results: URR

²⁴¹Am(n, γ) at n_TOF in the URR (20 BPD, E_{thr}=280 keV)

Expected Results

CROSS SECTION AT THERMAL:

The results from C_6D_6 will provide data with statistical uncertainty better than 1%. Thus the uncertainty will be dominated by the knowledge of the **neutron flux at thermal (2-3%)** and the systematic uncertainties in the analysis (~2%). Overall accuracy expected ~4%.

RESOLVED RESONANCE REGION (RRR)

The **combination of the TAC and C₆D₆ data** will provide accurate resonance parameters with an overall accuracy dominated by the systematic uncertainties in the analysis: \sim **3**-.

UNRESOLVED RESONANCE REGION (URR)

- <u>BELOW 20 KEV</u>

The **combination of the TAC and C₆D₆** data will provide data with statistical uncertainty better than 2%. The analysis by means of average resonance parameters will provide information about the reliability of the Res. Par. obtained in the RRR. Overall accuracy expected \sim **3%**.

- BETWEEN 20 KEV AND 600 KEV

The measurement with C6D6 will provide data with statistical uncertainty better than 2%. The **background from the aluminum capsule and Al_2O_3** matrix will become comparable to the capture contribution. Overall accuracy expected **3-5%**.

- <u>ABOVE 600 KEV</u>

A higher threshold (~ 1MeV) will have to be used due to the **opening of the inelastic** channel. **Fission reactions** (threshold @ ~600 keV) will start to contribute to the recorded counting rate.

The overall accuracy expected is to be confirmed, but **5-10%** seems feasible.

Conclusions

The ²⁴¹Am(n,γ) cross section is being measured at the n_TOF facility:

- The C_6D_6 and TAC detectors will be combined for the first time
- Both detection set-ups will provide data even better than those obtained in the past thanks to several important upgrades.
- The measurement will cover the full range between thermal and 1 MeV

The preliminary data (30% statistics) with the C₆D₆ detectors show:

- a) The activity of the sample is not a big issue for a threshold of 280 keV or higher
- b) Resonances are well observed even above the actual limit of the RRR
- c) The statistics will be sufficient for reaching the proposed accuracies in the thermal & URR
- d) The fission background will be an issue above ~600 keV.

The expected accuracies are:

3% in the RRR. 3-5% in the thermal and URR up to 600 keV. 5-10% in the URR above 600 keV.

The measurement with the TAC set-up will start in mid September.

y Tecnológicas

