

Measurement of prompt fission γ-rays with lanthanum halide scintillation detectors

A. Oberstedt

This work was supported by the EFNUDAT programme of the European Commission (agreement number 31027)

Final Scientific EFNUDAT Workshop, CERN, Aug 30 - Sep 2, 2010

Outline

- Motivation
- Characterization of LaCl₃(Ce) detectors
 - intrinsic activity
 - energy resolution
 - intrinsic efficiency
 - timing resolution
- Experiment at IKI Budapest (cold neutrons)
- Results
- Summary and conclusions
- Outlook

Motivation

Assessment of γ -heating for design of Gen-IV reactors

- about 10 % of total energy released in the core of a standard nuclear reactor by fission γ-rays
- about 40 % of those due to prompt γ-decay of fission products

Modelling requires uncertainty not larger than 7.5 % (1 σ)

- but: present γ-ray emission data determined in early 1970's, underestimating γ-heating with 10 - 28 % for ²³⁵U and ²³⁹Pu
- -> NEA Nuclear Data High Priority List:
- measurement of prompt γ-ray emission from ²³⁵U(n,f) and ²³⁹Pu(n,f)!

Assessment of γ-heating

Experimental task

Time-of-flight method to distinguish between γ -rays and neutrons (i.e. neutron-induced γ -rays)

-> requires good timing resolution

Back then:

- Nal detectors and ionization chambers
- $\tau \approx 3 5$ ns and $\tau \ge 1$ ns

Today & tomorrow: new detectors offer new possibilities

- lanthanum halide crystals and pcCVD diamond detectors
- -> intended fission γ-ray measurements a prerequisite to the assessment of γ-heating!

Characterization of LaCl₃(Ce) detectors

Energy resolution

- expected E^{-1/2} behaviour
- $\Delta E/E = 3.8 4.2$ % (FWHM) at 662 keV (¹³⁷Cs)

Andreas Oberstedt

Intrinsic efficiency

- in agreement with other LaCl₃ detectors (interpolated)
- 53 % better than NaI(TI) detectors of same size

Andreas Oberstedt

Timing - coincidence measurement

• two LaCl₃ detectors with multiple source (²²Na and ⁶⁰Co)

Timing - TAC spectrum

Characterization of LaCl₃(Ce) detectors

Timing - TAC spectrum

Fission-fragment and γ-spectrometry

Simultaneous measurement of:

- post-neutron fission fragment distributions of ²³⁵U + n_{th}
 - time-of-flight and kinetic energy
 - fission-fragment spectrometer VERDI (-> talk S. Oberstedt)
 - pcCVD diamond detectors as fission trigger
- prompt fission γ-rays
 - two LaCl₃(Ce) scintillation detectors (1,5"x 1,5", coaxial)
 - one LaCl₃(Ce) scintillation detector (3"x 3", coaxial)
 - one LaBr₃(Ce) scintillation detector (2"x 2", coaxial)
 - ⁶Li shielding against thermal neutrons
 - coincidence with fission trigger (stop: fission start: γ -ray)

Location:

• 10 MW research reactor at IKI Budapest

Experimental details

Sample:	²³⁵ U (113 μg)
Thermal neutron flux:	7 · 10 ⁷ cm ⁻² s ⁻¹
Fission rate:	1.18 ⋅ 10 ⁴ s ⁻¹
Fission fragment count rate:	12 s ⁻¹
Fission γ count rate:	10 s ⁻¹

Beam time: 2 weeks (10 days)

Expected number of counts

- fission fragments: $8.5 \cdot 10^6$ - γ -rays:~ $3 \cdot 10^7$

Performed in February/March 2010

Experimental setup

γ-detectors: LaBr₃ (2"x 2"), 2 x LaCl₃ (1,5"x 1,5"), LaCl₃ (3"x 3")

cold neutron beam

fission fragment spectrometer VERDI

Final Scientific EFNUDAT Workshop, CERN, Aug 30 - Sep 2, 2010

Andreas Oberstedt

TAC signal vs. PH signal

TAC spectrum (zoomed)

Prompt γ -peak + inelastic neutron scattering + neutron capture

Andreas Oberstedt

Final Scientific EFNUDAT Workshop, CERN, Aug 30 - Sep 2, 2010

Characteristic spectra vs. TAC signature

Energy calibration

Preliminary results I

TAC regime of thermal neutron induced γ -rays: energy spectrum

Andreas Oberstedt

Preliminary results II

TAC regime of fast neutron induced γ -rays and isomers

Observe: more peaks have still to be identified!

Andreas Oberstedt

Preliminary results III

All TAC regimes: energy spectra - normalized & calibrated

Preliminary results IV

Prompt fission γ-spectrum - background subtracted

To guide the eye: simulation according to Verbeke et al., LLNL (2009)

Andreas Oberstedt

Final Scientific EFNUDAT Workshop, CERN, Aug 30 - Sep 2, 2010

Background on simulation

Prompt fission γ -energy distribution

$$N(E) = \begin{cases} 38.13(E - 0.085)e^{1.648E} & E < 0.3 \text{ MeV} \\ 26.8e^{-2.30E} & 0.3 < E < 1.0 \text{ MeV} \\ 8.0e^{-1.10E} & 1.0 < E < 8.0 \text{ MeV} \end{cases}$$

Obtained from measurements by Maienschein et al., *Neutron Phys. Ann. Prog. Rep.*, ORNL (1958)

Summary and conclusions I

Characterization of LaCl₃:Ce detectors (1,5"x 1,5"):

- Energy resolution $\Delta E/E \le 4$ % at 662 keV
 - − 40 % better than NaI (TI) up to $E_{\gamma} \approx 7$ MeV
- Intrinsic peak efficiency determined
 - 50 % better than NaI (TI) of same size up to $E_{\gamma} \approx 2.6 \text{ MeV}$
- Timing resolution τ_{intr} ≈ 630 ps (FWHM) for entire energy range (441 ps for ⁶⁰Co)
 - − $\tau_{intr} \approx 3 5$ ns for NaI(TI)
 - − previously published $\tau_{intr} \approx 300$ ps, but smaller detectors and higher Ceconcentration
- Considerable intrinsic activity, but controlled by coincidence
- Good linearity (residuals < 0.3 % above 100 keV)
- Dynamical range up to ~ 17 MeV γ -rays

Fission γ-ray measurements ...

Summary and conclusions II

LaCl₃ scintillation detectors do indeed fulfill requirements for the measurement of prompt fission γ -rays, in particular in conjunction with pcCVD diamond detectors ($\tau \approx 300 \text{ ps}$)

- excellent timing resolution
- improved n/γ-discrimination (time-of-flight method)
- neutron sensitive, but no activation of LaCl₃ by fast neutrons

Prompt fission γ -rays from ²³⁵U(n_{th}, f) measured:

- γ -rays distinguished with respect to their origin (fission, neutroninduced, β -delayed ...)
- preliminary prompt fission γ-spectrum presented
- interactions between thermalized neutrons and detector material extremely rare, i.e. Φ(n_{th}) < 0,2 s⁻¹ cm⁻²

Outlook

To come:

- data analysis to be completed (3 more detectors)
- response functions have to be determined and applied
- LaBr₃:Ce (2"x 2") detectors to be characterized
- new LaCl₃:Ce (1.5"x 2") detectors to be characterized
- effect of BGO anti-Compton shield to be investigated
- new experiment contemplated: detection of fission γ-rays during measurement of ²⁵²Cf(sf) at IRMM with VERDI

• ..

Collaborators

- **JRC IRMM Geel**

- **CIEMAT Madrid**

- R. Billnert, A. Göök, J. Karlsson, A. Oberstedt
- R. Borcea, F.-J. Hambsch, S. Oberstedt
- T. Belgya, Z. Kis, L. Szentmiklosi, K. Takács
- D. Cano-Ott, T. Martinez-Perez

Thank you!

