Definition of a standard neutron field with the ⁷Li(p,n)⁷Be reaction

C. Lederer¹, I. Dillmann², U. Giessen³, F. Käppeler⁴, A. Mengoni⁵, M. Mosconi³, R. Nolte³, A. Wallner¹

¹ Faculty of Physics, University of Vienna, Vienna

- ² GSI and University of Giessen, Darmstadt/Giessen
- ³ Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
- ⁴ Karlsruhe Institute of Technology (KIT), Karlsruhe
- ⁵ IAEA, Nuclear Data Section, Vienna, Vienna

⁷Li(p,n)⁷Be as neutron source

- for E_p=1912 keV → quasi-maxwellian energy distribution with kT=25 keV
- neutron emission: forward peaked with 120° opening angle

Ratynski and Käppeler, Phys. Rev. C 37 (1988)

Claudia Lederer

Nucleosynthesis in stars beyond Fe:

 s-process (slow neutron capture) responsible for 50% of abundances between Fe and Bi

Nucleosynthesis in stars beyond Fe:

- s-process (slow neutron capture) responsible for 50% of abundances between Fe and Bi
- nuclear physics input: (n,γ) cross-sections, β half-lives

Nucleosynthesis in stars beyond Fe:

- s-process (slow neutron capture) responsible for 50% of abundances between Fe and Bi
- nuclear physics input: (n, γ) cross-sections, β half-lives
- stellar environments: maxwellian neutron field, s-process sites: kT~25 keV

Nucleosynthesis in stars beyond Fe:

- s-process (slow neutron capture) responsible for 50% of abundances between Fe and Bi
- nuclear physics input: (n, γ) cross-sections, β half-lives
- stellar environments: maxwellian neutron field, s-process sites: kT~25 keV

Direct measurement of Maxwellian-averaged cross-sections with ⁷Li(p,n) source

Measurement of ¹⁹⁷Au(n,γ) at KIT*

Ratynski and Käppeler (Phys. Rev. C 37, 1988)

- spherical Au sample covering whole beam
- absolute flux determination by ⁷Be activity of Li target

Claudia Lederer

Measurement of ¹⁹⁷Au(n,γ) at KIT*

Ratynski and Käppeler (Phys. Rev. C 37, 1988)

- spherical Au sample covering whole beam
- absolute flux determination by ⁷Be activity of Li target

* former FZK

Claudia Lederer

Measurement of ¹⁹⁷Au(n,γ) at KIT*

* former FZK

niversität

Ratynski and Käppeler (Phys. Rev. C 37, 1988)

- spherical Au sample covering whole beam
- absolute flux determination by ⁷Be activity of Li target

for transformation to Maxwellian-averaged cross-section (MACS):

- energy dependence of cross-section
- neutron spectrum

Other measurements of MACS at KIT

Other measurements of MACS at KIT

Short-lived radioisotopes:

- Activation + decay counting
- ⁵⁸Fe, ⁵⁹Co, ⁸⁷Rb, ⁸⁸Sr, ⁸⁹Y, ¹³⁹La, etc. (Heil et al., Dillmann et al., Käppeler et al., O'Brien et al....)

Long-lived radioisotopes:

- Activation + Accelerator Mass Spectrometry (AMS)
- AMS labs: ATLAS (Argonne), GAMS (Munich), VERA (Vienna)
- ⁹Be, ¹³C, ⁴⁰Ca, ⁵⁴Fe, ^{58,62}Ni, ⁷⁸Se, ²⁰⁹Bi, etc. (Coquard et al., Dillmann et al., Nassar et al., Rugel et al., Wallner et al....)

Other measurements of MACS at KIT

Short-lived radioisotopes:

- Activation + decay counting
- ⁵⁸Fe, ⁵⁹Co, ⁸⁷Rb, ⁸⁸Sr, ⁸⁹Y, ¹³⁹La, etc. (Heil et al., Dillmann et al., Käppeler et al., O'Brien et al....)

Long-lived radioisotopes:

- Activation + Accelerator Mass Spectrometry (AMS)
- AMS labs: ATLAS (Argonne), GAMS (Munich), VERA (Vienna)
- ⁹Be, ¹³C, ⁴⁰Ca, ⁵⁴Fe, ^{58,62}Ni, ⁷⁸Se, ²⁰⁹Bi, etc. (Coquard et al., Dillmann et al., Nassar et al., Rugel et al., Wallner et al....)

All relative to ¹⁹⁷Au(n,γ) cross-section!

¹⁹⁷Au(n,γ) as standard cross-section

- recommended standard for thermal and from 0.2-2.8 MeV
- 3-200 keV: 6-8 % discrepancy between Ratynski-Käppeler evaluation and standard evaluation

Figure by V.G. Pronyaev

Claudia Lederer

¹⁹⁷Au(n,γ) as standard cross-section

- recommended standard for thermal and from 0.2-2.8 MeV
- 3-200 keV: 6-8 % discrepancy between Ratynski-Käppeler evaluation and standard evaluation

⁷Li(p,n) spectrum at PTB

Claudia Lederer

- calibrated setup for angular distribution measurements
- Proton source: 3.75 MV Van de Graaff
- E_p=1912 1 keV
- Repetition Rate: 0.625 MHz
- Pulse width (FWHM): 3ns
- Average proton current: 0.5-0.8 μA

Claudia Lederer

Target:

- Metallic Li evaporated on Ta
- 10 µm thickness (565 µg/cm²) → protons slowed down below reaction threshold (E_{thres}=1881 keV)

Claudia Lederer

Physikalisch Technische Bundesanstalt Braunschweig und Berlin

Target:

- Metallic Li evaporated on Ta
- 10 µm thickness (565 µg/cm²) → protons slowed down below reaction threshold (E_{thres}=1881 keV)

Positions:

- two flight paths: 35 cm and 70 cm
- angles: 0-65 deg, steps of 5 deg

Claudia Lederer

Physikalisch Technische Bundesanstalt Braunschweig und Berlin

Target:

- Metallic Li evaporated on Ta
- 10 µm thickness (565 µg/cm²) → protons slowed down below reaction threshold (E_{thres}=1881 keV)

Positions:

- two flight paths: 35 cm and 70 cm
- angles: 0-65 deg, steps of 5 deg

Detectors:

- moveable Li-glass
- Long counter (fluence determination)

Claudia Lederer

70 cm flight path: high energy resolution (<1 keV)

- 35 cm flight path: low energy end of spectrum and background studies
- reference runs twice a day at defined position (0 deg, 70 cm)
- runs with different targets (LiF on Ta and LiF on Ag)

Data reduction

- dead-time correction and background subtraction
- time-of-flight to neutron energy conversion
- detection efficiency: ⁶Li(n,t)⁴He cross-section (standard!)
- neutron fluence: long-counter
- solid angle correction

Data reduction

- dead-time correction and background subtraction
- time-of-flight to neutron energy conversion
- detection efficiency: ⁶Li(n,t)⁴He cross-section (standard!)
- neutron fluence: long-counter
- solid angle correction

70 cm flight path

Data reduction

- dead-time correction and background subtraction
- time-of-flight to neutron energy conversion
- detection efficiency: ⁶Li(n,t)⁴He cross-section (standard!)
- neutron fluence: long-counter

²⁸Si-resonance

Reference Runs: different targets

Reference Runs: target stability

Reference Runs: target stability

Different angles: 35 cm vs. 70 cm

Claudia Lederer

Different angles: 35 cm vs. 70 cm

no target aging effect because:

Different angles: 35 cm vs. 70 cm

 closer look to kinematics → different angle covered at different flight paths

no target aging effect because:

• W. Ratynski and F. Käppeler, Phys. Rev. C **37**, 595 (1988)

• W. Ratynski and F. Käppeler, Phys. Rev. C **37**, 595 (1988)

effect on averaged cross-section: example: ⁶²Ni(n,γ) (JENDL library)

Claudia Lederer

• W. Ratynski and F. Käppeler, Phys. Rev. C **37**, 595 (1988)

effect on averaged cross-section:

example: ⁶²Ni(n,γ) (JENDL library)

• 22.7 mb for Ratynski and Käppeler spectrum

• 23.7 mb for PTB spectrum

→ 4% effect

Claudia Lederer

¹⁹⁷Au(n,γ) (ENDF-B7 library)

- 633 mb for Ratynski and Käppeler spectrum
- 630 mb for PTB spectrum

only 0.5 % difference !

• W. Ratynski and F. Käppeler, Phys. Rev. C **37**, 595 (1988)

universität

Claudia Lederer

¹⁹⁷Au(n,γ) (ENDF-B7 library)

- 633 mb for Ratynski and Käppeler spectrum
- 630 mb for PTB spectrum

only 0.5 % difference !

- W. Ratynski and F. Käppeler, Phys. Rev. C **37**, 595 (1988)
- Fit from 0-90 keV of a:E:exp(-E/kT) with kT = 25 keV

universität wien

Claudia Lederer

- W. Ratynski and F. Käppeler, Phys. Rev. C **37**, 595 (1988)
- Fit from 0-90 keV of a:E:exp(-E/kT) with kT = 25 keV
- PINO- a tool for simulating neutron spectra resulting from the ⁷Li(p,n) reaction, R. Reifarth et al., Nucl. Instr. Meth. A 608, 139 (2009)

Claudia Lederer

- W. Ratynski and F. Käppeler, Phys. Rev. C **37**, 595 (1988)
- Fit from 0-90 keV of a:E:exp(-E/kT) with kT = 25 keV
- PINO- a tool for simulating neutron spectra resulting from the ⁷Li(p,n) reaction, R. Reifarth et al., Nucl. Instr. Meth. A 608, 139 (2009)

Claudia Lederer

Conclusions

• "aging-effect" of target causing shift to lower energies but cannot explain differences in different flight paths

- neutron spectrum not sensitive to different targets
- low and high energy-end of spectrum comparable to Ratynski and Käppeler measurement
- differences to Ratynski and Käppeler between 10-60 keV
- good agreement to PINO simulation up to 15 keV
- MC-simulations of various experimental effects underway

Claudia Lederer

Thank you for your attention!

