

n_TOF facility

EFNUDAT Final Scientific Workshop CERN, Aug 30-Sep 2 2010 Vasilis.Vlachoudis@cern.ch for the n_TOF collaboration

n_TOF timeline

1997: n_TOF concept

ADS Developments:

- Nuclear Waste Transmutation
- Medical Isotopes Production
- Cleaner Energy Production
- Boron Neutron Capture Therapy [BNCT]
- ⇒ Require the complete and precise knowledge of neutron cross sections

Idea:

- Knowledge acquired from TARC (PS-211)
- PS of CERN [26 GeV/c, 3 10¹³ p/pulse]
- Spallation target Pb, to produce neutrons [1 proton 24 GeV/c ⇒ ~700 neutrons]
- Long flight path ~200 m

CERN/ET/Int. Note 97-19 http://proj-ntof.web.cern.ch/proj-nTOF

1999: The n_TOF Collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Margues³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti1¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

33 Research Institutions 120 researchers

2000: A Google view of n_TOF

2001: The real world n_TOF commissioned in 2001-2002 **Carbon Fib** Sample changer (n,f) Setup: PPAC detectors (n,γ) Setup: etectors

- wide energy range
- high neutron flux

- wide energy range
- high neutron flux
- high resolution

- wide energy range
- high neutron flux
- high resolution

- wide energy range
- high neutron flux
- high resolution
- low repetition rate of the proton driver

source: P Rullhusen (GELINA)

comparison with GELINA (~ same average flux at 30m)

- wide energy range
- high neutron flux
- high resolution
- low repetition rate of the proton driver
- Iow background conditions

2002-4: n_TOF basic character

- wide energy range
- high neutron flux
- high resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

- wide energy range
- high neutron flux
- high resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

sample changer and beam pipe made out of carbon fiber

- wide energy range
- high neutron flux
- high resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high efficiency detectors (TAC)

- 40 BaF₂ crystals
- high detection efficiency ≈100%
- good energy resolution
- so far, only used for (n,γ) measurements in 2004

- wide energy range
- high neutron flux
- high resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high efficiency detectors (TAC)
- advanced DAQ system

Acqiris FADC

Capture

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

2002-4: n_TOF experiments

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related Nuclear Technologies
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for Nuclear Astrophysics
 - s-process: branchings
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

2004: Cooling circuit activation

2 years Ntof operartions

Info: CERN-SC-2005-034-RP-TN

2005-7: Target investigation

(h)

•

- 27.09.2007: Target removal
- Target visual inspection & photography, RC-camera
- Dose rate measurements of target
- Measurement of hole at the beam impact location
- Analysis of lead Samples taken
- FLUKA simulations of the target activation, as well as detailed maps for pit and pool
- Target surface inspection using a dedicated custom-built (and developed) laser system
- Extensive study of the target corrosion mechanism
- 2 External reviews verified the concept of the new target
 - Water cooled lead target
 - Improved cooling
 - New cooling system

2008: New spallation target

2008: Pit lay-out

2008-9: Stations lay-out

Target cooling system

Cooling Capacity: 7k	Ŵ		
Water flow:	8 m ³ /h at 1.5 bars		
Temperature:	18 C		
Instrumentation:	O ₂ , pH, Conductivity,		
Retention basin:	1000		
Resin filters:	2		
Degassing Device	O_2 level < 80ppb		

Target Area is continuously flushed outFilter:7BeFlush:<150 m³/h</th>Volume:1200 m³Dose to public:< 1µSv for 1.6×10¹⁹p

Requirements for Work Sector Type-A

Fire resistance

- Walls F90 and doors T60
- Detection system in the area and ventilation ducts
- Isolation of Work Sector in case of fire

Ventilation system

- Under pressure in the Work Sector (higher hazard) 60 Pa
- > 5 air renewal/hour (500 m³/h)
- Under pressure secured in case of power failure (CERN Safety Network or dedicated UPS)

Floor and walls

Continuous and impermeable coating (floor coating raised 10 cm to wall)

Access protocol specification

- Material and personnel ("hot" and "cold" changing room)
- RP detectors

Decontamination system

Wash basin (with water container retention vessel)

112 INCOME. **Escape line**

TOF Experimental Area

御

E. Chiaven / INTO Meeting 25/24 June 2010

Borated Water Circuit

- Main contribution of γ background was the 2.2 MeV ¹H(n,γ)
- Solutions to replace water moderator with
 - borated water
 - + unaffected fluence and energy resolution >1eV
 - 470 keV photons
 - heavy water
 - + increase fluence
 - worse energy resolution
- Installed Separated circuit using enriched boric acid in saturation mode (44g/l @18°C)
 ~1.28% of H₃BO₃

Cooling and Moderator station

The target and moderator circuits are decoupled and work independently

2008-9: Commissioning

Beam characteristics:

- Neutron fluence: PTB Fission Chamber ²³⁵U uMegas: ²³⁵U & ¹⁰B SiLi, Gold foils
- Spatial distribution: Medipix with LiF & polyethylene
- Resolution function: C6D6 with ^{54,56}Fe
- Background: CR-39, TLD, BaF₂ and C6D6

Cooling station:

- Monitor Performance
- Control O₂ level

Requirements

2.5×10¹⁸ p
 ~1 month of beam time

Neutron Fluence

Background

Iron (45 mm, 2mm) [background subtracted]

2009-2015: Phase II program

Capture measurements				
Mo, Ru, Pd stable isotopes	r-process residuals calculation isotopic patterns in SiC grains			
Fe, Ni, Zn, and Se (stable isotopes) ⁷⁹ Se	s-process nucleosynthesis in massive stars accurate nuclear data needs for structural materials			
A≈150 (isotopes varii)	s-process branching points long-lived fission products			
^{234,236} U, ^{231,233} Pa	Th/U nuclear fuel cycle			
235,238U	standards, conventional U/Pu fuel cycle			
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	incineration of minor actinides			

(*) approved by CERN Scientific Committee (planned for execution in 2009)

2009-2015: Phase II program

LICC	inn.	mog	CUIRO	mol	otc
FI33		IIEa	SUIE		11.3

MA ^{240,242}Pu, ²⁴⁵Cm, ^{241,243}Am

 235 U(n,f) with p(n,p')

²³⁴U(n,f)

ADS, high-burnup, GEN-IV reactors

new ²³⁵U(n,f) cross section standard

study of vibrational resonances at the fission barrier

Other measurements

¹⁴⁷Sm(n, α), ⁶⁷Zn(n, α), ⁹⁹Ru(n, α) ⁵⁸Ni(n,p), other (n,lcp)

Al, V, Cr, Zr, Th, ²³⁸U(n,lcp)

He, Ne, Ar, Xe

n+D

p-process studies gas production in structural materials

structural and fuel material for ADS and other advanced nuclear reactors

low-energy nuclear recoils (development of gas detectors)

neutron-neutron scattering length

n_TOF facility Summary

Spallation Target

- New spallation target more robust than the past, with equal physics performances
- Borated water moderation system
 Elimination of the ¹H(n,γ(2.2 MeV)) → further improved signal-to-background conditions

Work Sector Type A experimental area

- \rightarrow no major restrictions on radioactive samples measurement
- Significant improvement in measurement capabilities

2010-2015 experimental campaign

- Angular distribution of fission fragments with PPACs
- Capture measurements with C6D6 (Fe,Ni,²⁴¹Am)
- Capture measurements on actinides with TAC (²⁴¹Am)
- Commissioning with borated water moderator
- Validation of simultaneous measurement of capture and fission reactions
- Measurement of the fission cross-section of ²⁴⁰Pu and ²⁴²Pu