The European Spallation source

EUROPEAN SPALLATION SOURCE

Mats Lindroos

Head of the ESS Accelerator Division

Accelerator Design @ ESS

EFNUDAT, CERN 2010-09-02

NUMBER OF STREET, STRE

ESS - multi-science with neutrons

Materials science Energy Technology

Bio-technology Hardware for IT

Nano science Engineering science

- Neutrons can provide unique and information on almost all materials.
- Information on both structure and dynamics simulaneously. "Where are the atoms and what are they doing?"
- 5000 users in Europe today Access based on peer review.
- Science with neutrons is limited by the intensity of today's sources

Intensity opens new possibilities

Details/Resolution

ESS intensity allows studies of

- complex materials
- weak signals
- important details
- time dependent phenomena

Tomography and "movies"

Dr. Burkhard SchillingerNeutronentomographie ANTARESForschungsreaktor FRM-II

Fundamental physics at ESS

- Workshop held in Lund in December 2009 on possibilities for Neutron, Nuclear, Neutrino, Muon and medical physics at ESS
 - All presentation available at 3N2MP website: http://indico.hep.lu.se//conferenceDisplay.py?confld=896
- Follow up workshop in spring 2011 to produce Letter of Intents for ESS SAC

How does ESS work?

- An ion source creates positive hydrogen ions (protons).
- Pulses of protons are accelerated into a target with neutron rich atoms.
- In the target neutrons are liberated by a a spallation reaction.
- The neutrons are then guided to instruments where they are used for materials studies.

Spallation: A nuclear process in which a high energy proton excites a neutron rich nucleus which decays sending out neutrons (and other particles).

Preconstruction phase

1st ESS Steering Committee: 22nd & 23rd October 2009 Copenhagen

Strong support from 13 countries to:

- to engage in the ESS Design Update
- to prepare organisation aimed for construction
- 5th ESS Steering committee: 7th & 8th October 2010 in Stockholm
- ESS AB fully operational, 16 member states and planning for Design Update project in full progress!

Timelines

first design

2002-2003

ESFRI Report 2003

site decision 2009

ESS Pre-construction phase

ESS Construction phase

Completion phase

Operations phase

Decommissioning phase !!!

2010-2012 2013-2018 2018-2025 2026-2066

2067-2071

You could buy four A380 airbuses...

or, 28% of the Fehmarn Bridge

or, you could pay the bonuses of US bankers for... 24 days

The Sustainable Research Centre

Responsible - Recyclable - Renewable

To be carbon dioxide neutral over the lifetime of the facility, including transportation to and from the site.

ESS accelerator high-level technical objectives: 5 MW long pulse source ≤2 ms pulses ≤20 Hz Protons (H+) Low losses High reliability, >95%

Línac R&D in progress

RF distribution

Option	Configuration	Cost of 4 cavity (K- Euro)	For	Against
1	Four cavities per Klystron	2420	Fewest power sources	Complexity, bulk, power overhead, fault tolerence
2	One Cavity per Klystron	2880	Reduced hardware inventory, minimum R&D, fully independent control, minimum RF power overhead, best fault tolerance, easy upgrade to HPSPL	Number of power sources
2a	One cavity per IOT	2520	As above, perhaps cheaper & more compact	HPSPL would need doubling of IOTs, or larger rating IOTs
3	Two cavities per Klystron	2520	Half the number of klystrons	Need full hardware set, associated R&D, Power overhead, Reduced flexibility wrt option 2
3-VM	Two cavities per Klystron Without VMs	2370	Half the number of klystrons, more economical than Option 3	Risk for higher intensity?

Writing Group for linac project plan

- Project plan for the linac design update and prototyping
 - Design Report for the end of 2012, 20% precision in costing
 - Readiness to construct by the end of 2012 -- the design will be a safe baseline design with technical choices made for which the writing of specifications, detailed drawings and completion of late prototypes could be launched without any further delay after 2012
 - Energy budget and sustainability should be taken into account in each work package
- Responsibilities within WG

- S.Peggs Accelerar Physics and configuration control
- R. Duperrier System engineering
- C.Oyon Project planning
- M. Lindroos Coordination and planning
- WG schedule and milestones
 - Project specification for ESS STC in October
 - Start date 1 January 2011

Extended writing group

(30 years ago)

Steve Peggs

Cristina Oyon

Work Package (work areas)

Management Coordination – ESS (Mats Lindroos)
Accelerator Science – ESS (Steve Peggs)
Infrastructure Services – Tekniker, Bilbae (Josu Equi

Infrastructure Services – Tekniker, Bilbao (Josu Eguia)
SCRF Spoke cavities – IPN, Orsay (Sebastien Bousson)
SCRF Elliptical cavities – CEA, Saclay (Guillaume Devanz)

Guillaume Devanz

Mats Lindroos
6. Front End and NC linac – INFN, Catania (Santo Gammino)
7. Beam transport, NC magnets and Power Supplies – Århus University (Søren Pape-Møller)
8. RF Systems – Uppsala university (Roger Ruber)

Roger Ruber UPPSALA UNIVERSITET

Sebastien Bousson

Santo Gammino

Status of the DU planning

- Excellent feedback from the first TAC for the architecture.
- A plan B was suggested in case the spoke initiative fails.
- The DU project plan is presently refined and the planning is being consolidated. PBS is complete.
- The present architecture is already the result of a functional analysis from the long pulse need. This analysis phase is continuing.
- First subsystem specifications will follow. Several will be established after a convergence on interfaces (target, ...).
- First risk analysis for the DU will be conducted before 2011.
- Negotiations between ESS and external contributors have started.
- Documentation and communication plan is being set-up.

TION Synergies with High Power SPL study at CERN

352.2 MHz

704.4 MHz

- construction of Low-Power SPL together with PS2,
- main users: PS2 (LHC), ISOLDE upgrade, EURISOL-0 (?),
- operation in 2020

	Develop	ment	
kinetic energy	going on for SPL Eucard at CEA-		
beam power (@			
repetition rate	Saclay (beta -1)		
pulse length	Saciay (
average pulse cu	20 mA		
protons p. pulse	1.1 10 ¹⁴		
length (SC linac)	427 m		

Most of the spoke cavity tests were performed in vertical cryostat. Only a few were done in an accelerator-like configuration.

Spoke cavities

- Tests with beam have never been performed !
 - BUT expected (and partially experimentally proven) performances are worth it !

Prototype strategy

- Planned and proposed prototypes in DU phase (before 2013):
 - SC Cavities (All elliptical and spoke types) at CEA and IPNO
 - Half length cryomodule for 4 elliptical, with CERN
 - Existing ion source and RFQ in Catania and at CEA
 - Control system HW unit with SW interface ("Control box")
- Planned and proposed prototypes in (pre-)construction phase based on preparatory work in DU phase (2013++)
 - RF source, control and distribution system in Uppsala
 - Full length cryomodules for all SC cavity types
 - Beam instrumentation
 - Final version of Ion source in Catania
 - DTL

Test stand strategy

- 704 MHz test stand for SC elliptical cavities and a cr
 - Possible sites CERN, CEA, Uppsala and DESY (after XFEL)
 - Study and costing in progress for CERN, CEA and Uppsala
 - Focus in Uppsala on RF source, control and distribution
- 352 MHz test stand for SC spoke cavities and cryomodules
 - One test stand at CEA
 - One test stand under construction at IPNO in Paris
- 352 MHz test stand for NC structures
- Test area for Ion Source development in Catania

- Configuration management:
 - Requires 6 months lead time and central repository for baseline parameters
- Reliability and upgrade strategy Mandate from STC is a 5 MW accelerator
 - Physicist can always use more intensity...
 - "Shorter pulses (>0.8 ms) can't hurt and it will do a lot of good for some instruments", F.Mezei
 - Important to be study upgrade scenarios now with proper costing <u>including</u> the additional cost already at construction

Blue skies research on a truly a green field site http://ess-scandinavia.eu/jobs

Anders Ångström

Niels Bohr

The Angström Bohr Centre