

A COMPILATION OF EXPERIMENTAL NUCLEAR DATA FOR TOTAL REACTION CROSS SECTIONS

- I am on the program...
- How could I fall for it?
- Status of my addiction
- How to find more of it
- How to find the good stuff
- Positive effects from the addiction?
- How to become free from the addiction
- A call for help

• I am on the program...

Try Beta 🛛 👗 Log in / create account edit this page article discussion history Twelve-step program From Wikipedia, the free encyclopedia A **twelve-step program** is a set of guiding principles outlining a course of action for recovery from addiction, compulsion, or other behavioral problems. Originally proposed by Alcoholics Anonymous (AA) as a method of recovery from alcoholism,^[1] the Twelve Steps were first published in the book, Alcoholics Anonymous: The Story of How More Than One Hundred Men Have Recovered From Alcoholism in 1939.^[2] The method was then adapted and became the foundation of other twelve-step programs such as Narcotics Anonymous, Overeaters Anonymous, Co-Dependents Anonymous and Debtors Anonymous. As summarized by the American Psychological Association, the process involves the following:^[1] admitting that one cannot control one's addiction or compulsion; recognizing a greater power that can give strength; examining past errors with the help of a sponsor (experienced member); making amends for these errors; . learning to live a new life with a new code of behavior;

helping others that suffer from the same addictions or compulsions.

EFNUD

• I am on the program...

How could I fall for it? (Background)

How could I fall for it? (Background)

What is the total reaction cross section?

Ex: Fe ion incident on Oxygen

1: Nothing...

16O

2: Elastic scattering σ_{El}

56**Fe**

EFNUDA

3: Nonelastic interaction σ

Nuclear excitation Nucleon knockout Particle knockout Nucleon exchange Nucleon absorption **Spallation** Fission Fusion Fragmentation **Spallation**

3: Nonelastic interaction σ_{r}

Nuclear excitation Nucleon knockout Particle knockout Nucleon exchange Nucleon absorption **Spallation** Fission Fusion Fragmentation **Spallation**

Each reaction has its individual cross section The sum of all cross sections is the total reaction cross section

The total reaction cross section = The total probability for a nonelastic reaction to occur

The total reaction cross section = The total probability for a nonelastic reaction to occur

 $\sigma_{\rm Tot} = \sigma_{\rm R} + \sigma_{\rm EI}$

$\sigma_{\rm R}$ is energy dependent

EFNUDAT

Total reaction cross sections can be used:

- To provide another constraint, besides angular distributions, in analyses of elastic scattering (Optical Model calculations...)
- To determine the sizes and matter distributions of the nuclei (exotic nuclei)

$$\sigma_R = \pi \cdot R_0^2 = \pi \cdot r_0^2 \left(A_P^{1/3} + A_T^{1/3} \right)^2$$

Total reaction cross sections can be used:

- In a number of applications:
 - Radiation cancer treatment and dosimetry
 - Space radiation shielding and dosimetry
 - Cosmic radiation effects during interacting with matter (SEE/SEU)
 - Astrophysics (nucleosynthesis)
 - Transmutation of nuclear waste
 - Energy conversion

Total reaction cross sections <u>are</u> used:

- In complex Monte Carlo codes (FLUKA, GEANT, MCNPX, PHITS, ...):
 - Determine mean-free path before the first interaction in matter
 - Scaling factor for specific reactions (p,n), (p,2pn), (p,a), ...

- Protons Bauhoff (1986) → Carlson (1996), Barashenkov (1993)
- Exotic nuclei Ozawa et al. (2001)
- Data bases
 - EXFOR
 - LANL (neutrons)

- Protons Bauhoff (19 E devisor (1996), Barashenkov (1993)
- Exotic nuclei Ozawa et al. (2001)
- Data bases
 - EXFOR
 - LANL (neutrons)

- Protons Bauhoff (19 E < 1 GeV son (1996), Barashenkov (Inconsistencies...
- Exotic nuclei Ozawa et al. (2001)
- Data bases
 - EXFOR
 - LANL (neutrons)

- Protons Bauhoff (19 E < 1 GeV son (1996), Barashenkov (Inconsistencies...
- Exotic nuclei Ozawa *et* Limited nuclei
- Data bases
 - EXFOR
 - LANL (neutrons)

- Protons Bauhoff (19 E < 1 GeV son (1996), Barashenkov (Inconsistencies...
- Exotic nuclei Ozawa et Limited nuclei
- Data bases
 - EXFO Very valuable resource, but limited, and somewhat complicated to use.
 LANL Also some inconsistencies.

Personal motivation:

- Need data for development of models, have collected (and measured) data since ~2000
- Noticed that some model makers are "lazy" or are not using the available data in a correct way
- Noticed that most model makers are not aware of all the available data (hard work!)

FFNUD

h

а

S

 Realized in 2009: I have a large collection of experimental data that many people seem to be unaware of, why not publish it? EFNUD

Personal motivation:

- 2009: Merged Lantz & Sihver data bases into one, following up references and citations
- Goal:
 - Submit for publication before end of 2010 (probably too optimistic)
 - Make data easily available for inclusion in EXFOR (have dialogue with IAEA)
 - (get done and move on with research...)

Status of my addiction

20 July 2010: 55 pages of tables, ~550 refs.

- σ_{R} data for:
 - p+A (~2100 data points)
 - n+A (~1100)
 - A+A (2400)
- Also other data of similar interest
 - σ_I A+A (~400)
 - σ_{cc} A+A (~900)
 - σ_{Tot} p+A, A+A (~300)

Status of my addiction

20 July 2010: 55 pages of tables, ~550 refs.

Proi	Target	Energy	ΔE	(Tp	Δσε	Notes	Ref	Proi	Target	Energy	ΔE	σъ	$\Lambda \sigma_{n}$	Notes	Ref
1105	ranget	MeV/A	MeV/A	mh	mh	110103	Kei		rarget	MeV/A	MeV/A	mb	mb	110003	
^{12}C	¹² C	0.33	1010 0/11	1465	70		[168]	12C	28 5;	5.42	1010 0/11	1440	60	c	[557]
^{12}C	^{12}C	0.33		1405	50		[430 320]	12C	Si Si	27	6	1700	40	5 r	[534]
^{12}C	^{12}C	24.42		1170	+170	7	[450, 529]	^{12}C	Si	30	5	1555	40	1 r	[534]
^{12}C	^{12}C	24.42		1240	-100	2	[472]	12C	Si Si	702	5	1555	45	1 r	[347]
12C	12C	20.7		1240	200	Z	[304]	12C	Si Si	3658		1130	80	1	[39]
12C	12C	20		1216	40		[450, 526]	12C	32 5	2100		1250	51	em	[355]
12C	C	22.5	65	1200	40	v	[329]	12C	40 Ca	2100		1250	60	em	[339]
12C	12C	22.5	0.5	1209	32	X	[407]	12C	40Ca	83		1510	60		[320]
^{12}C	Ċ	40.2	12.0	1150	11	v	[303]	12C	Ee Ee	200		1648	110		[329]
12C	12C	40.5	15.9	1172	56	х	[407]	12C	Fo	200		1505	120		[329]
12C	Ċ	40.7	7.2	11/5	15	v d	[225]	12C	Fe	200		1575	120		[329]
12C		40.1 56.4	10.0	1076	22	x,u	[407]	12C	54Eo	20		2195	140		[329]
12C	C	50.4	10.0	1070	22	X	[407]	12C	54Eo	20 82		1915	140		[329]
^{12}C	C	09.9	51.0 12.2	1039	12	X	[407]	12C	54Ee	83 82		1815	100		[320]
12C	12C	/0.4	12.2	057	12	x,u	[407]	12C	56Ee	03		1//0	100		[329]
12C	12C	83		957	39		[304]	120	56Ee	83		1810	100		[328]
^{12}C	12C	83		960	30		[430, 328]	120	57 Fe	85		2206	150		[329]
12C		83	22.9	905	12		[329]	120	57 Fe	30		2296	160		[329]
120	C	80.3	22.8 42.5	998	13	X	[487]	120	57 Fe	83		1820	80		[328]
12 C	C	98.8	43.5	962	10	X	[487]	120	Fe	83		1867	100		[329]
120	C	118.4	20.2	919		x,a	[487]	12C	Cu	29.78	2.5	2404	99		[451]
120	C	121.1	04.9 40.1	910	5	X	[487]	120	Cu	15	2.5	2200	350	z,r	
120	C	139.8	40.1	8/0	5	x,a	[487]	12C	Cu	25	1.7	2350	350	z,r	
12 C	C	157.4	20.1	831	9	x,a	[487]	12C	Cu	35	1.0	1750	250	z,r	
12 C	$\frac{C}{12C}$	195.5	33.2	797	13	X	[487]	12C	Cu	45	1.0	1650	250	z,r	
12 C	C	200	25.0	864	45		[329]	12C	Cu	2100		1730	36	em	[355]
12 C	$\frac{C}{12C}$	224.5	25.0	789	12	X	[487]	12C	Cu	3658		1700	90		[38]
12 C	C	250	50.2	8/3	60		[329]	12C	Cu	3700		2700	200	e	[185]
12 C	C	250.8	50.3	782	9	X	[487]	12C	Cu	4500		2000	100	e	
12 C	(('	2/4/	253	1//6	E E2	x d	14X71	14(1	Zn	200		1747	110	1	1 13701

• Easy methods

- Key word search: "total reaction cross section"
- Author search
- PACS numbers search
- Check reference lists carefully

• Difficult methods

- Find "strange" references (technical reports, conference proceedings, journals in Russian, Chinese...)
- Talk with people
- Use "Citing articles" function

A study has been made of stars produced by 380-Mev alpha particles in Ilford G.5 emulsion. The mean free path for star production is 18.4 ± 0.9 cm. The number of prongs per star varies from one to eight. The average number of prongs per star is 3.3. The striking feature of these stars is stripping, or splitting of the incident alpha particle. This is evident in the large number of two-prong stars in which both prongs emerge with high energy at small angles to the beam direction; in the presence of one-prong stars, in which the single prong is a fast proton or deuteron emerging in nearly the forward direction; and in the very narrow angular distribution of the fast prongs.

The star prongs have been divided into two groups, one group consisting almost entirely of cascade prongs, and the other consisting predominantly of evaporation prongs. The properties of the two groups of prongs are examined. It is found that the excitation produced by alpha particles is similar to that produced by protons of the same energy, but the cascade differs in important respects.

By observing the stars with prongs of energy lower than is necessary to escape the barrier of a heavy nucleus, one can identify 27% of the stars as originating in light nuclei. This places a lower limit on the number of events occurring in the gelatin.

© 1956 The American Physical Society

URL: http://link.aps.org/doi/10.1103/PhysRev.101.324 DOI: 10.1103/PhysRev.101.324

🤣 Applications Places System 🛄 🥹 (?) 🚬 🛛 🔇	🕥 12 °C Thu 18 Mar, 00:48 (b lantzelot 🗉 💉 📢 🖳 💆
O Phys. Rev. 77, 54 (1950): The Heavy Nuclei of the Primary Cosmic Radiation - Mozilla Fire	efox	_ = ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		
←	😭 🗸 😽 🖌 Google	A 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
Catting Started P Most Visitedy NI atest Headlings - W Science Direct - Nus		
🕻 姬 Phys 🗱 📊 Measure 💿 Creating 🙆 Springer 📴 IOPscien 🥨 Phys. Re 🕪 http:201/ 📴 IOPscien 🔤 IEEE Xpl 🙆 Springer 🧍	💁 Springer 🔌 Springer 🔌 Spri	inger 🚾 Phys. Re > 🐈 👻
Citation Search: Phys. Rev. Lett. Vol. Page/Article		
Your access to this article is provided through the subscription of Riken Kenkyusho		
	A new free weekly publication	on from APS
PROLA » Phys. Rev. » Volume 77 » Issue 1 <pre></pre>	cle >	
Phys. Rev. 77, 54–70	Dian	
The Heavy Nuclei of the Drimony Coemic Dediction		SICS
The Heavy Nuclei of the Primary Cosmic Radiation		
	spotlighting except	tional research
Abstract References Citing Articles (139) Page Images	Read the latest from Physic	cs:
Download: PDF (4 270 kB) Export: BibTeX or EndNote (BIS)	Viewpoint: Race for Majorar	na fermions
	Viewpoint: Proximity to und	derstanding the
139 citing articles found	cuprates	
	Trends: Rewiring for adapta	ation
[Previous · 1-25 · 20-50 · 51-75 · 76-100 · · 126-139 · Next]		
Show Only APS Citations 51. Possibility of simultaneous observation of nucleus fragment and γ-ray family in the stratosphere		
Yasuo Niihori, Toru Shibata, Inacio M. Martin, Edison H. Shibuya, and Armando Turtelli		
Journals Phys. Rev. D 36, 783 (1987)		
Physical Review (33) 52. Search for anomalous interaction mean free paths of charge $2 \le 7 \le 18$ projectile fragments in emulsions		
Physical Review C (32) exposed to 1.8 A GeV40Ar ions		
Il Nuovo Cimento (13) S. B. Beri, K. B. Bhalla, R. Bhanja, A. Bharti, V. S. Bhatia, G. Claesson, S. Garpman, S. K. Gupta, V. K.		
Il Nuovo Cimento A (7) Gupta, N. Y. Herrstrom		
Journal of Physics G Nuclear Zeitschrift für Physik A Atomic Nuclei 327, 431 (1987)		
and Particle Physics (7)		
Physical Review Letters (6) 53. Pion production in inelastic and central nuclear collisions at high energy Physical Paview D (4) A Apiking A Colekby/astay K Jayobay S Kharazay E Kuznatzaya L Lukating E Okanay T Ostanovi		
	ch	
Physical Review D (4) IVI. Anikina, A. Golokinastov, K. lovchev, S. Kilorozov, E. Kuzhetzova, J. Lukstins, E. Okonov, T. Ostanevi Zaitschrift für Physik A Atoms V. Toneev, G. Vardenga, L. Chkhaidze, T. Dzobava, M. Gaździcki, F. Skrzynozak, R. Szwed, and K. Gudi	ch,	

Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	
		MeV/A	MeV/A	mb	mb					MeV/A	MeV/A	mb	mb			
¹² C	¹² C	9.33		1465	70		[168]	¹² C	²⁸ Si	5.42		1440	60	s	[557]	
¹² C	¹² C	9.33		1444	50		[430, 329]	¹² C	Si	27	6	1700	40	r	[534]	
¹² C	¹² C	24.42		1170	+170	z	[472]	¹² C	Si	39	5	1555	45	r	[534]	
¹² C	¹² C	28.7		1240	200	z	[364]	¹² C	Si	70?				r	[347]	
¹² C	¹² C	30		1315	40		[430, 328]	¹² C	Si	3658		1130	80		[38]	
¹² C	¹² C	30		1316	40		[329]	¹² C	³² S	2100		1250	51	em	[355]	
¹² C	С	32.5	6.5	1209	32	x	[487]	¹² C	⁴⁰ Ca	83		1550	60		[328]	
¹² C	¹² C	33.1		1331	75		[563]	¹² C	⁴⁰ Ca	83		1510	60		[329]	
¹² C	С	40.3	13.9	1159	11	x	[487]	¹² C	Fe	200		1648	110		[329]	
¹² C	¹² C	40.7		1173	56		[223]	¹² C	Fe	250		1595	120		[329]	
¹² C	С	46.1	7.2	1125	15	x,d	[487]	¹² C	Fe	300		1575	110		[329]	
¹² C	С	56.4	18.8	1076	22	x	[487]	¹² C	⁵⁴ Fe	30		2185	140		[329]	
¹² C	С	69.9	31.6	1039	9	x	[487]	¹² C	⁵⁴ Fe	83		1815	100		[328]	
¹² C	С	76.4	12.2	1013	12	x,d	[487]	¹² C	⁵⁴ Fe	83		1776	100		[329]	
¹² C	¹² C	83		957	39		[564]	¹² C	⁵⁶ Fe	83		1810	100		[328]	
¹² C	¹² C	83		960	30		[430, 328]	¹² C	⁵⁶ Fe	83		1791	150		[329]	
^{12}C	¹² C	83		965	30		[329]	¹² C	⁵⁷ Fe	30		2296	160		[329]	
^{12}C	С	86.3	22.8	998	13	x	[487]	¹² C	⁵⁷ Fe	83		1820	80		[328]	
^{12}C	С	98.8	43.5	962	10	x	[487]	¹² C	⁵⁷ Fe	83		1867	100		[329]	
^{12}C	С	118.4	20.2	919	11	x,d	[487]	¹² C	Cu	29.78		2404	99		[451]	
^{12}C	С	121.1	64.9	910	5	x	[487]	¹² C	Cu	15	2.5	2200	350	z,r	[171]	
^{12}C	С	139.8	40.1	870	5	x,d	[487]	¹² C	Cu	25	1.7	2350	350	z,r	[171]	
^{12}C	С	157.4	20.1	831	9	x,d	[487]	^{12}C	Cu	35		1750	250	z,r	[171]	
^{12}C	С	195.5	33.2	797	13	х	[487]	¹² C	Cu	45	1.0	1650	250	z,r	[171]	
^{12}C	¹² C	200		864	45		[329]	¹² C	Cu	2100		1730	36	em	[355]	
¹² C	C	224.5	25.0	789	12	х	[487]	^{12}C	Cu	3658		1700	90		[38]	
¹² C	^{12}C	250		873	60		[329]	^{12}C	Cu	3700		2700	200	e	[185]	
¹² C	С	250.8	50.3	782	9	х	[487]	^{12}C	Cu	4500		2000	100	e	[31]	
^{12}C	C	2747	25.3	776	12	x d	[487]	12C	Zn	200		1747	110		[320]	1

Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	ſ	Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	
		MeV/A	MeV/A	mb	mb						MeV/A	MeV/A	mb	mb			
¹² C	¹² C	9.33		1465	70		[168]	Ì	¹² C	²⁸ Si	5.42		1440	60	s	[557]	
¹² C	^{12}C	9.33		1444	50		[430, 329]		^{12}C	Si	27	6	1700	40	r	[534]	
¹² C	¹² C	24.42	-	1170	+170	Z	[472]		¹² C	Si	39	5	1555	45	r	[534]	
12 C	¹² C	28.7		SOT	odia	Cally	v enri	C	ne	Si	70?				r	[347]	
12	^{12}C	30		1315	40		[430, 328]		^{12}C	Si	3658		1130	80		[38]	
¹² C	¹² C	30		1316	-+0	nal	comp		-"4	32s2	2100		1250	51	em	[355]	
¹² C	С	32.5	6.5	1209	4 1 3 1 1	L	comp		2191	Uldar	83		1550	60		[328]	
12 C	¹² C	33.1		1331	75		[563]		^{12}C	⁴⁰ Ca	83		1510	60		[329]	
¹² C	С	40.3	13.9	1159	11	x	[487]		¹² C	Fe	200		1648	110		[329]	
^{12}C	^{12}C	40.7		1173	56		[223]		¹² C	Fe	250		1595	120		[329]	
¹² C	C	46.1	7.2	1125	15	x,d	[487]		^{12}C	Fe	300		1575	110		[329]	
^{12}C	С	56.4	18.8	1076	22	x	[487]		^{12}C	⁵⁴ Fe	30		2185	140		[329]	
¹² C	С	69.9	31.6	1039	9	x	[487]		¹² C	⁵⁴ Fe	83		1815	100		[328]	
^{12}C	С	76.4	12.2	1013	12	x,d	[487]		^{12}C	⁵⁴ Fe	83		1776	100		[329]	
^{12}C	^{12}C	83		957	39		[564]		^{12}C	⁵⁶ Fe	83		1810	100		[328]	
^{12}C	^{12}C	83		960	30		[430, 328]		¹² C	⁵⁶ Fe	83		1791	150		[329]	
^{12}C	^{12}C	83		965	30		[329]		^{12}C	⁵⁷ Fe	30		2296	160		[329]	
^{12}C	С	86.3	22.8	998	13	x	[487]		^{12}C	⁵⁷ Fe	83		1820	80		[328]	
^{12}C	С	98.8	43.5	962	10	x	[487]		^{12}C	⁵⁷ Fe	83		1867	100		[329]	
^{12}C	С	118.4	20.2	919	11	x,d	[487]		^{12}C	Cu	29.78		2404	99		[451]	
^{12}C	С	121.1	64.9	910	5	x	[487]		^{12}C	Cu	15	2.5	2200	350	z,r	[171]	
¹² C	С	139.8	40.1	870	5	x,d	[487]		^{12}C	Cu	25	1.7	2350	350	z,r	[171]	
¹² C	С	157.4	20.1	831	9	x,d	[487]		^{12}C	Cu	35		1750	250	z,r	[171]	
¹² C	C	195.5	33.2	797	13	x	[487]		^{12}C	Cu	45	1.0	1650	250	z,r	[171]	
¹² C	^{12}C	200		864	45		[329]		¹² C	Cu	2100		1730	36	em	[355]	
¹² C	C	224.5	25.0	789	12	x	[487]		¹² C	Cu	3658		1700	90		[38]	
¹² C	^{12}C	250		873	60		[329]		¹² C	Cu	3700		2700	200	e	[185]	
¹² C	С	250.8	50.3	782	9	x	[487]		¹² C	Cu	4500		2000	100	e	[31]	
^{12}C	C	2747	25.3	776	12	x d	[[487]]		^{12}C	Zn	200		1747	110		[320]	1

Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	ſ	Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	1
		MeV/A	MeV/A	mb	mb						MeV/A	MeV/A	mb	mb			
¹² C	¹² C	9.33		1465	70		[168]	ľ	^{12}C	²⁸ Si	5.42		1440	60	s	[557]	1
¹² C	¹² C	9.33		1444	50		[430, 329]		^{12}C	Si	27	6	1700	40	r	[534]	
¹² C	¹² C	24.42		/1179	+170	Z	[472]		^{12}C	Si	39	5	1555	45	r	[534]	
¹² C	¹² C	28.7		/ 6 10	200	enei	'QY4		^{12}C	Si	70?				r	[347]	
¹² C	¹² C	30		1315	40		[430, 328]		^{12}C	Si	3658		1130	80		[38]	
¹² C	¹² C	30	N	316	ppp	nrc	niven		^{12}C	^{32}S	2100		1250	51	em	[355]	
¹² C	С	32.5	6.5	1209	32	X	9 [487]		^{12}C	⁴⁰ Ca	83		1550	60		[328]	
¹² C	¹² C	33.1		1331	75		[563]		^{12}C	⁴⁰ Ca	83		1510	60		[329]	
¹² C	С	40.3	13.9	1159	11	x	[487]		^{12}C	Fe	200		1648	110		[329]	
¹² C	¹² C	40.7		1173	56		[223]		^{12}C	Fe	250		1595	120		[329]	
¹² C	С	46.1	7.2	1125	15	x,d	[487]		^{12}C	Fe	300		1575	110		[329]	
¹² C	С	56.4	18.8	1076	22	x	[487]		^{12}C	⁵⁴ Fe	30		2185	140		[329]	
¹² C	С	69.9	31.6	1039	9	x	[487]		^{12}C	⁵⁴ Fe	83		1815	100		[328]	
^{12}C	С	76.4	12.2	1013	12	x,d	[487]		^{12}C	⁵⁴ Fe	83		1776	100		[329]	
¹² C	¹² C	83		957	39		[564]		^{12}C	⁵⁶ Fe	83		1810	100		[328]	
^{12}C	¹² C	83		960	30		[430, 328]		^{12}C	⁵⁶ Fe	83		1791	150		[329]	
^{12}C	¹² C	83		965	30		[329]		^{12}C	⁵⁷ Fe	30		2296	160		[329]	
¹² C	С	86.3	22.8	998	13	x	[487]		^{12}C	⁵⁷ Fe	83		1820	80		[328]	
^{12}C	С	98.8	43.5	962	10	x	[487]		^{12}C	⁵⁷ Fe	83		1867	100		[329]	
^{12}C	С	118.4	20.2	919	11	x,d	[487]		^{12}C	Cu	29.78		2404	99		[451]	
¹² C	С	121.1	64.9	910	5	x	[487]		^{12}C	Cu	15	2.5	2200	350	z,r	[171]	
¹² C	С	139.8	40.1	870	5	x,d	[487]		^{12}C	Cu	25	1.7	2350	350	z,r	[171]	
¹² C	С	157.4	20.1	831	9	x,d	[487]		^{12}C	Cu	35		1750	250	z,r	[171]	
^{12}C	С	195.5	33.2	797	13	x	[487]		^{12}C	Cu	45	1.0	1650	250	z,r	[171]	
¹² C	^{12}C	200		864	45		[329]		^{12}C	Cu	2100		1730	36	em	[355]	
¹² C	C	224.5	25.0	789	12	x	[487]		^{12}C	Cu	3658		1700	90		[38]	
¹² C	^{12}C	250		873	60		[329]		^{12}C	Cu	3700		2700	200	e	[185]	
¹² C	С	250.8	50.3	782	9	x	[487]		^{12}C	Cu	4500		2000	100	e	[31]	
^{12}C	C	2747	25.3	776	12	x d	[[487]]	I	^{12}C	Zn	200		1747	110		[320]	1

Proj	Target	Energy MeV/A	ΔE MeV/A	σ_R mb	$\Delta \sigma_R$ mb	Notes	Ref	Proj	Target	Energy MeV/A	ΔE MeV/A	σ_R mb	$\Delta \sigma_R$	Notes	Ref
¹² C	¹² C	9.33		1465	70		• [168]	¹² C	²⁸ Si	5.42		1440	60	s	[557]
^{12}C	^{12}C	9.33	S =	Sur	n 50	t D	itter	ence	2Ssi M	neth		1700	40	r	[534]
^{12}C	¹² C	24.42		1170	+170	Z	[472]	¹² C	Si	39	5	1555	45	1	[534]
^{12}C	¹² C	28.7		1240	200		4 64 a b		Si	70?				r	[347]
^{12}C	¹² C	30	em	1315	rių	SIO	1430, E C	Ing	lesi	3658		1130	60		[30]
^{12}C	¹² C	30		1316	40		[329]	¹² C	³² S	2100		1250	51	em	[355]
^{12}C	C	32.5	Trus	stw	ort	hv (exner	ime	ntal	me	thod	C13 0	60		[328]
^{12}C	¹² C	33.1		1331	75	· / `	[553]	12C	⁴⁰ Ca	83		1510	60		[329]
^{12}C	C	40.3	13.9	1159	11	x	[487]	¹² C	Fe	200		1648	110		[329]
^{12}C	¹² C	40.7		1173	56		[223]	¹² C	Fe	250		1595	120		[329]
^{12}C	C	46.1	7.2	1125	15	x,d	[487]	¹² C	Fe	300		1575	110		[329]
^{12}C	C	56.4	18.8	1076	22	x	[487]	¹² C	⁵⁴ Fe	30		2185	140		[329]
^{12}C	C	69.9	31.6	1039	9	x	[487]	¹² C	⁵⁴ Fe	83		1815	100		[328]
^{12}C	C	76.4	12.2	1013	12	x,d	[487]	¹² C	⁵⁴ Fe	83		1776	100		[329]
^{12}C	¹² C	83		957	39		[564]	¹² C	⁵⁶ Fe	83		1810	100		[328]
^{12}C	¹² C	83		960	30		[430, 328]	¹² C	⁵⁶ Fe	83		1791	150		[329]
^{12}C	¹² C	83		965	30		[329]	¹² C	⁵⁷ Fe	30		2296	160		[329]
${}^{12}C$	C	86.3	22.8	998	13	x	[487]	¹² C	⁵⁷ Fe	83		1820	80		[328]
${}^{12}C$	C	98.8	43.5	962	10	x	[487]	¹² C	⁵⁷ Fe	83		1867	100		[329]
${}^{12}C$	C	118.4	20.2	919	11	x,d	[487]	¹² C	Cu	29.78		2404	99		[451]
${}^{12}C$	C	121.1	64.9	910	5	x	[487]	¹² C	Cu	15	2.5	2200	350	z,r	[171]
${}^{12}C$	C	139.8	40.1	870	5	x,d	[487]	¹² C	Cu	25	1.7	2350	350	z,r	[171]
^{12}C	C	157.4	20.1	831	9	x,d	[487]	¹² C	Cu	35		1750	250	z,r	[171]
¹² C	C	195.5	33.2	797	13	x	[487]	¹² C	Cu	45	1.0	1650	250	z,r	[171]
¹² C	¹² C	200		864	45		[329]	¹² C	Cu	2100		1730	36	em	[355]
¹² C	C	224.5	25.0	789	12	x	[487]	¹² C	Cu	3658		1700	90		[38]
¹² C	¹² C	250		873	60		[329]	¹² C	Cu	3700		2700	200	e	[185]
¹² C	C	250.8	50.3	782	9	x	[487]	¹² C	Cu	4500		2000	100	e	[31]
^{12}C	C	2747	25.3	776	12	v d	[487]	12C	Zn	200	1	1747	110	1	[[220]

ſ	Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref		Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	
			MeV/A	MeV/A	mb	mb						MeV/A	MeV/A	mb	mb			
Ì	¹² C	¹² C	9.33		1465	70		[168]		¹² C	²⁸ Si	5.42		1440	60	s	[557]	
	¹² C	¹² C	9.33		1444	50		[430, 329]		¹² C	Si	27	6	1700	40	r	[534]	
	¹² C	¹² C	24.42		1170	+170	z	[472]		¹² C	Si	39	5	1555	45	r	[534]	
	¹² C	¹² C	28.7		1240	200	z	[364]		¹² C	Si	70?				r	[347]	
	¹² C	¹² C	30		1315	40		[430, 328]		¹² C	Si	3658		1130	80		[38]	
	¹² C	¹² C	30		1316	40		[329]		¹² C	³² S	2100		1250	51	em	[355]	
	¹² C	С	32.5	6.5	1209	32	x	[487]		¹² C	⁴⁰ Ca	83		1550	60		[328]	
	¹² C	¹² C	33.1		1331	75		[563]		¹² C	⁴⁰ Ca	83		1510	60		[329]	
	¹² C	С	40.3	13.9	1159	11	x	[487]		¹² C	Fe	200		1648	110		[329]	
	¹² C	¹² C	40.7		1173	56		[223]		¹² C	Fe	250		1595	120		[329]	
	¹² C	С	46.1	7.2	1125	15	x,d	[487]		¹² C	Fe	300		1575	110		[329]	
	¹² C	С	56.4	18.8	1076	22	x	[487]		¹² C	⁵⁴ Fe	30		2185	140		[329]	
	¹² C	С	69.9	31.6	1039	9	x	[487]		^{12}C	⁵⁴ Fe	83		1815	100		[328]	ł
	^{12}C	С	76.4	12.2	1013	12	x,d	[487]		^{12}C	⁵⁴ Fe	83	•	1776	100		[329]	l
	¹² C	¹² C	83		957	39		[564]		re		lata	tro	m 10	DIOT	S	[328]	l
	¹² C	¹² C	83		960	30		[43 0, 328]		¹² C	⁵⁶ Fe	83	•••	1791	150	-	[329]	l
	^{12}C	¹² C	83		965	30		[329]		¹² C	⁵⁷ Fe	dif.	fana	2206	160	atio	[329]	l
	^{12}C	С	86.3	22.8	998	13	x	[482]	-	Sur	57		l el e	820	l.ea		112	l
	^{12}C	С	98.8	43.5	962	10	x	[487]		12 C	⁵⁷ Fe	83		1867	100		[329]	
	^{12}C	С	118.4	20.2	919	11	x,d	[487]		^{12}C	Cu	29.78		2404	99		[451]	
	^{12}C	С	121.1	64.9	910	5	x	[487]		^{12}C	Cu	15	2.5	2200	359	z,r	[171]	
	¹² C	С	139.8	40.1	870	5	x,d	[487]		^{12}C	Cu	25	1.7	2350	350	z,r	[71]	
	¹² C	С	157.4	20.1	831	9	x,d	[487]		^{12}C	Cu	35		1750	2.0	z,r	[171]	l
	¹² C	C	195.5	33.2	797	13	x	[487]		^{12}C	Cu	45	1.0	1650	250	z,r	[171]	l
	¹² C	¹² C	200		864	45		[329]		^{12}C	Cu	2100		1730	36	em	[355]	
	¹² C	C	224.5	25.0	789	12	X	[487]		^{12}C	Cu	3658		1700	90		[38]	
	¹² C	^{12}C	250		873	60		[329]		¹² C	Cu	3700		2700	200	e	[185]	
	¹² C	С	250.8	50.3	782	9	X	[487]		¹² C	Cu	4500		2000	100	e	[31]	
	^{12}C	C	2747	25.3	776	12	x d	[[487]]		12C	Zn	200		1747	110		[320]	i.

Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref	Proj	Target	Energy	ΔΕ	σ_R	$\Delta \sigma_R$	Notes	Ref
	-	MeV/A	MeV/A	mb	mb					MeV/A	MeV/A	mb	mb		
¹² C	¹² C	9.33		1465	70		[168]	¹² C	²⁸ Si	5.42		1440	60	s	[557]
¹² C	¹² C	9.33		1444	50		[430, 329]	¹² C	Si	27	6	1700	40	r	[534]
¹² C	¹² C	24.42		1170	+170	z	[472]	¹² C	Si	39	5	1555	45	r	[534]
¹² C	¹² C	28.7		1240	200	z	[364]	¹² C	Si	70?				r	[347]
¹² C	¹² C	30		1315	40		[430, 328]	¹² C	Si	3658		1130	80		[38]
¹² C	¹² C	30		1316	40		[329]	¹² C	³² S	2100		1250	51	em	[355]
¹² C	С	32.5	6.5	1209	32	x	[487]	¹² C	⁴⁰ Ca	83		1550	60		[328]
¹² C	¹² C	33.1		1331	75		[563]	¹² C	⁴⁰ Ca	83		1510	60		[29]
¹² C	С	40.3	13.9	1159	11	x	[487]	¹² C	Fe	200		1648	110		[29]
¹² C	¹² C	40.7		1173	56		[223]	¹² C	Fe	250		1595	120		[829]
¹² C	С	46.1	7.2	1125	15	x,d	[487]	¹² C	Fe	300		1575	110		[329]
¹² C	С	56.4	18.8	1076	22	x	[487]	¹² C	⁵⁴ Fe	30		2185	140		[329]
¹² C	С	69.9	31.6	1039	9	x	[487]	¹² C	⁵⁴ Fe	83		1815	100		[328]
¹² C	С	76.4	12.2	1013	12	x,d	[487]	¹² C	⁵⁴ Fe	83		1776	100	•	[329]
¹² C	¹² C	83		957	39		[564] 0	We	nee	2 0 83 m	ore	CO	um	ns?	[328]
¹² C	¹² C	83		960	30		[43 0, 328]	¹² C	⁵⁶ Fe	83		1791	150		[329]
¹² C	¹² C	83		965	30		[327]	¹² C	⁵⁷ Fe	30	C vn	2296	11		[329]
¹² C	С	86.3	22.8	998	13	x	[487]	ipor.	U I O	82	CXP.		2 1 501	ou)	[328]
¹² C	С	98.8	43.5	962	10	x	[487]	^{12}C	⁵⁷ Fe	83	•	1867	100		[29]
¹² C	С	118.4	20.2	919	11	x,d	[487]	¹² C	Cu	29.78		2404	99		[451]
¹² C	С	121.1	64.9	910	5	x	[487]	¹² C	Cu	15	2.5	2200	350	z,r	[171]
¹² C	С	139.8	40.1	870	5	x,d	[487]	¹² C	Cu	25	1.7	2350	350	z,r	[171]
¹² C	С	157.4	20.1	831	9	x,d	[487]	¹² C	Cu	35		1750	250	z,r	[11]
¹² C	С	195.5	33.2	797	13	x	[487]	¹² C	Cu	45	1.0	1650	250	z,r	[171]
¹² C	¹² C	200		864	45		[329]	¹² C	Cu	2100		1730	36	em	[35.]
¹² C	С	224.5	25.0	789	12	x	[487]	¹² C	Cu	3658		1700	90		[38]
¹² C	¹² C	250		873	60		[329]	¹² C	Cu	3700		2700	200	e	[185]
¹² C	С	250.8	50.3	782	9	x	[487]	¹² C	Cu	4500		2000	100	e	[31]
^{12}C	С	274 7	25.3	776	12	x d	[487]	12C	Zn	200		1747	110		[[320]]

- Quality check of all references –> decrease the list
 - Which kind of experimental methods should be included?
 - Direct measurements
 - Summed or integrated partial cross sections
 - Emulsion and solid state track detectors
 - Model dependent derivations from other variables
 - Will set threshold based on quality of experimental method, not on quality of result
 - Maybe good reasons why some data are forgotten...?

EFNUE

• Will set threshold based on quality of experimental method, not on quality of result

• Maybe good reasons why some data are forgotten...?

EFNUDA

Positive effects from the addiction

Positive effects from the addiction

Positive effects from the addiction

Positive effects from the addiction Motivate new neutron measurements?

Positive effects from the addiction Motivate new neutron measurements?

Positive effects from the addiction Motivate new neutron measurements?

(Ingemarsson & Lantz (2005)

Other effects from the addiction Science history, or sociology?

Other effects from the addiction Science history, or sociology?

EFNUDAT

Other effects from the addiction Science history, or sociology?

A call for help

- Still looking for more data, do You have any?
- How would You, as potential user of the compilation, prefer it to look like?
- Please contact us if you have any feedback, data, or comments: Mattias.Lantz@fysast.uu.se

Association, the process involves the following:^[1]

- admitting that one cannot control one's addiction or compulsion;
- recognizing a greater power that can give strength;
- examining past errors with the help of a sponsor (experienced member);

EFNU

making amends for these errors;

ia

rtal s

edia

- learning to live a new life with a new code of behavior;
- helping others that suffer from the same addictions or compulsions.

Thank you for your attention!

- Acknowledgements for valuable feedback, help, and inspiration
 - Akihisa Kohama, Maya Takechi, Hiroyoshi Sakurai RIKEN
 - Mitsunori Fukuda, Daisuke Nishimura Osaka University •
 - Takayuki Yamaguchi Saitama University
 - Chen Li Lanzhou •
 - Richard F. Carlson Redlands University •
 - Alfredo Ferrari CERN
 - Grzegorz Kaminski JINR •

• Lantz' work partly funded by () JSPS 日本学 Japan Society for the Prom

