

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

VERDI – a double fission-fragment time-offlight spectrometer

R. Borcea, S. Oberstedt

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

- Motivation
- VERDI concept and design
- EFNUDAT experiment @ IKI: first results
- More about diamonds...
- Conclusion & Outlook

Motivation

3

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Reliable predictions on fission product yields relevant in modern nuclear applications (GEN-IV, ADS...)

- Radio-toxicity of the nuclear waste
- γ-ray heating
- Decay heat calculations
- Delayed neutron yields relevant during reactor operation
- Prediction of fission-fragment mass and kinetic energy distributions of minor actinides (²³⁷Np, ^{241,243}Am, ²⁴²⁻²⁴⁸Cm)
- Emission spectrum and multiplicity (as a function of fragment mass) of prompt γ-rays and neutrons
- **O** Delayed neutron emission pre-cursor yields

Motivation

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Fission fragment (FF) yield Y(A, E_{kin}; TKE)

Prompt neutron multiplicity v(A, TKE)

Prompt fission neutron spectrum; <u>ε(A)</u>
 Prompt fission γ-ray spectrum and multiplicity;

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

✓ Double-energy (2E) technique

- > (Twin Frisch-grid) Ionization chamber (large angular acceptance)
- Silicon detectors
- ⇒ Pre-neutron mass and total kinetic energy distribution (A*, TKE)
- ⁽²⁾ Input of prompt neutron emission data (multiplicity, TXE dependence), iterative procedure → $\Delta A > 4$ u
- Sexperimental neutron data only for a few isotopes available

✓ Double-velocity (2v) measurement

- ✓ Double TOF spectrometer
- Pre-neutron mass and kinetic energy distribution (A*, E*_{kin}; TKE)
 Bitherto mostly limited timing (=mass) resolution, efficiency...

Recoil mass-separator (e. g. LOHENGRIN)

 \Rightarrow Single post-neutron mass and kinetic energy distribution (A, E_{kin})

VERDI – the concept

6

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Simultaneous measurement of kinetic energy and velocity of both fission fragments, 2(v, E)

• $2v \rightarrow pre-neutron masses, A_i^* (i = I, h), TKE$

• v, E \rightarrow post-neutron masses, A_i, E_{k,i} (i = I, h)

Cosi Fan Tutte (ILL)

VERDI – the concept

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Goals:

> spectrometer efficiency $\varepsilon \approx 0.005 - 0.01$

high resolution energy detector (∆E/E = 0.006)
 high precision (transmission) time pick-up with τ < 200 ps @ L = 50cm

 \triangleright for a mass resolution of $\Delta A < 2$

radiation hardness of the fission time pick-up

* Cosi Fan Tutte ($\epsilon \approx 5 \times 10^{-5}$)

VERDI - the design

Institute for Reference

8

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

✓ 2 x 19 PIPS detectors (450 mm²) → ε ≈ 0.5%✓ pCVDD (or MCP) ultra-fast time pick-up detectors

Set-up can be handled with NIM electronics (14 channels)
 development of an ASR + tag-word coder module

Coupling of an array of photon/neutron/detectors

pCVDDD as fission trigger

9

- ✓ Detector size: 1 × 1 cm²
 ✓ thickness: 100 µm
 ✓ Charge collection efficiency (CCE): 0.3
- "Weak" energy resolution: $\sigma = 0.2 0.4$

- Pulse height stability against radiation damage up to a fission-fragment dose of at least 1.2 × 10⁹
- Including an α-particle dose of 4×10^{10} and a fast neutron dose of about 5×10^{9}

pcCVDDD - intrinsic timing resolution

-irm native for Reference

10

- Simulation by means of Monte-Carlo simulation from known fission-fragment data
- TUD pre-amplifier (QS) + TFA Ortec 474: rise-time 6 ns
- Timing resolution very good but worse than expected from HI experiments

pcCVDDD - intrinsic timing resolution

Institute for Reference

11

- TUD pre-amplifier: current sensitive, rise-time < 4 ns</p>
- Wave-form digitization (Tektronix: 1GHz, 10 GS/s)

VERDI - the timing resolution

Institute for Reference Materials and Measurements

12

pCVDDD →TUD pre-amplifier (QS) + TFA Ortec 474: rise-time 6 ns
 PIPS → MSI 8 (SA, TFA + VT120)

VERDI – **FF** distributions

13

Improved electronics

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

✓ ORTEC 1GHz pre-amplifiers

- ✓ Signal boost with ORTEC VT120 (improved S/N)
- Timing-optimized energy (stop) detector from CANBERRA with a size of 450 mm²

Best resolution, but...

▶ pCVDDD → Ortec 9306 (1GHz) + VT120: rise-time ≤1.2 ns
 ▶ PIPS → MSI 8 (SA, TFA + VT120)

Best resolution, but...

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

▶ pCVDDD → Ortec 9306 (1GHz) + VT120: rise-time ≤1.2 ns
 ▶ PIPS → MSI 8 (SA, TFA + VT120)

The experiment(s) @ KFKI

17

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

✓ Single (v, E) experiment: $^{235}U(n_{th}, f) \Rightarrow Y(A, E_k)$

- with a 1×1 cm² pcCVDDD
- ²³⁵U (113 μg)
- $\Phi_{n,th} \approx 5 \times 10^7 / s/cm^2$
- $c_{th} > 2$ FF/s or 10⁶ FF/(120 h) per detector
- 10 energy detectors $\rightarrow \epsilon = 0.0026$

Fission γ-ray spectral measurement

- pCVDDD serves as ultra-fast fission event trigger
- Use of 4 lanthanum halide detectors of various size

 - one Lanthanum-chloride (3" × 3", CIEMAT)
 two Lanthanum-chloride (1.5" × 1.5")
 one lanthanum bromide (2" × 2")
 fission γ-ray count rate > 10/s or > 5 × 10⁶/(120 h) per detector (1.5" × 1.5")

Integral measurement of the prompt neutron spectrum

The experiment(s) @ KFKI

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

γ-ray detectors

19

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

JRC

EUROPEAN COMMISSION

Pulse height vs. Time Of Flight

20

"cleaned" spectra

Institute for Reference Materials and Measurements

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Polygons applied to spectra of all 8 detectors...

21

22

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Conclusions from the experiment at IKI:

- Single (v, E) spectrometer in principle operational; extension to 19 detectors straight forward
- ✓ Coupling of γ -ray (neutron) detectors for correlation experiments successfully tested (\rightarrow A. Oberstedt)
- Origin of the apparent "efficiency" problem of the pCVDDD has to be investigated
- Even the timing-optimized PIPS detectors from CANBERRA hardly do the job...

23

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

thickness 180 μm
 capacitance < 13 pF

DBA-IV
 Oscilloscope: 1GHz, 20Gs/s

Institute for Reference Materials and Measurements

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

24

500

5

15

10

³⁹Pu, ²⁴¹Am, ²⁴⁴Cm)

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

25

26

The transmission fission trigger

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

27

28

- The VERDI TOF spectrometer for correlation measurements of fission fragment properties under development and already in a serious testing phase
- The first TOF section of the VERDI spectrometer operational with up to 19 energy detectors
- ✓ TOF resolution better than or equal to 400 ps $\Rightarrow \Delta A = 2 3 u$
- ✓ With modern broadband amplifiers and... $\Delta A = 1 2$ u is in reach
- Artificial diamond detectors provide an ultra-fast fission trigger (τ < 280 ps)
 With broadband pre amplifiers and/or waveform digitization (τ < 180 ps)
 Radiation hard for characteristic neutron and fission-fragment doses
- Radiation hard for characteristic neutron and fission-fragment doses
- Loss of (light) fission fragments due to low CCE in pCVD diamond material has been investigated by simulating the response as a function of the detector capacitance
- The capacitance of a pCVDDD may not exceed 15pF !!!

29

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

In the near future:

Complete VERDI as a double TOF spectrometer (end of 2010)

- ✓ Build a transparent fission trigger
- Should principally work when made from ultra-thin pCVD diamond material, however with very limited detection effciency
- From simulations based on experimental results: scdiamond should do the job (C_d < 50pF)
 - ✓ under investigation ✓ thickness \leq 5 µm, 16-fold segmented

Tests with fission fragments when suitable ²⁵²Cf source available

✓ Efforts to find silicon detectors with better timing characteristics

Nothing without a good team!

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

MONNET technical team: Th. Gamboni, W. Geerts, C. Chaves de Jesus, M. Vidali

T. Belgya, R. Borcea, A. Göök, F.-J. Hambsch, Z. Kis, T. Martinez, A. Oberstedt, L. Szentmiklosi, K. Takács

This work was supported by the EFNUDAT programme of the European Commission (agreement number 31027)

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

31

The collaboration

32

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Technical University of Darmstadt

CIEMAT

IKI, Institute of Isotopes (HAS)

Joint Research Centre IRMM

The nuclear fission process

33

JRC FF properties in cross-section resonances **EUROPEAN COMMISSION**

34

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

E. Birgersson et al., Nucl. Phys. A817 (2009) 1-34

Motivation

35

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

\succ Prediction of γ -heating for design of Gen-IV reactors

- bout 10 % of total energy released in the core of a standard nuclear reactor by fission γ-rays
- > about 40 % of those due to prompt γ -decay of fission products

\geq Modelling requires uncertainty not larger than 7.5 % (1 σ)

but: present γ-ray emission data determined in early 1970's,
 underestimating γ-heating with 10 - 28 % for ²³⁵U and ²³⁹Pu

⇒ OECD NEA Nuclear Data High Priority List:

 \Rightarrow measurement of prompt γ -ray emission from ²³⁵U(n,f) and ²³⁹Pu(n,f)

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

36

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

.IRC

EUROPEAN COMMISSION

Momentum conservation :

- **1.** $E_{i1}^{*} = E_{i1}^{0} + PHD_{i0}(A_{i0}^{*} v_{i0}) Z_{i}, E_{kin,i0}) + \Delta E_{i0}(A_{i0}^{*} v_{i0}) Z_{i0}, E_{kin,i0})$ $\Rightarrow A_{i1}^{*}, v_{i1}, TKE_{1}, PHD_{i1}$
- **2.** $E_{i2}^* = E_i^0 + PHD_{i1}(A_{i1}^* v_{i1}, Z_i, E_{kin,i1}) + \Delta E_{i1}(A_{i1}^* v_{i1}, Z_{i1}, E_{kin,i1})$

\Rightarrow A^*_{i2} , v_{i2} , TKE₂, PHD_{i2}

j. $E^*_{ij} = E^0_i + PHD_{ij-1}(A^*_{ij-1} - v_{ij-1}, Z_i, E_{kin,ij-1}) + \Delta E_{ij-1}(A^*_{ij-1} - v_{ij-1}, Z_{ij-1}, E_{kin,ij-1})$ ⇒ $A^*_{ij}, v_{ij}, TKE_j, PHD_{ij}$

Double velocity (2v) technique

38

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Momentum conservation :

$$\begin{array}{l} A_{1}^{*}v_{1} = A_{2}^{*}v_{2} \\ A_{CN} = A_{1}^{*} + A_{2}^{*} \end{array} \\ E_{kin,i}^{*} = A_{i}^{*}v_{i}^{2} \end{array} \qquad \begin{array}{l} A_{1}^{*}v_{1} = (A_{CN} - A_{1}^{*})v_{2} \\ A_{1}^{*}v_{1} = v_{2}/(v_{1} + v_{2})*A_{CN} \\ A_{2}^{*} = A_{CN} - A_{1}^{*} \end{array}$$

No a-priori need of neutron emission data
 Mass resolution determined by timing resolution
 up to now quite low geometrical efficiency
 Same holds for recoil mass-separators: (v, E)

* Cosi Fan Tutte ($\epsilon \approx 5 \times 10^{-5}$)

VERDI – the "energy" side

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

O Axial ionisation chamber:

- Simple to construct and to use
- No radiation damage
- ✓ Very good intrinsic energy resolution
- Difficult to make a large area detector
- Energy loss in the entrance window
- Timing characteristics???

• Large area silicon detectors:

- ✓ Relatively cheap
- Easy to use
- Excellent pulse height stability
- Excellent energy resolution
- ✓ Promising timing characteristics (according to specs: t \approx 200 ns)
- Subject to radiation damage

VERDI – the fission trigger

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

Ο μ-channel plate detectors:

- Very good intrinsic timing characteristics
- Difficult to handle
- Requires excellent vacuum p < 10⁻⁶ mbar
- Subject to radiation damage (especially in an intense neutron field)???

• Diamond detectors (p/s-CVDD material):

New detector material
 Relatively few experimental results

- Pulse height stability of pCVDD difficult to predict and to maintain
- Difficult to produce (artificial) single-crystal diamonds
- ✓ Promising timing characteristics (with Ni-ion @ 30 MeV/u $\Delta t \approx 30$ ps)
 ✓ Radiation hard

Never tested with fission fragments (0.5 MeV/u < E_{FF} < 2 MeV/u)</p>

Pulse-height "analysis" and stabilitiy

EUROPEAN COMMISSION

.IRC

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

 Pulse height stability against radiation damage up to a fissionfragment dose of at least 1.2 × 10⁹

Including an α-particle dose of 4 × 10¹⁰ and a fast neutron dose of about 5 × 10⁹

The experiment(s) @ KFKI

42

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

²³⁵U: 113 μg/cm² on 34 μg/cm² polyimide (PI) mounted on top of the CVDDD + ⁶Li: 5 μg/cm² on 34 μg/cm² PI for calibration

EFNUDAT,"Final Scientific EFNUDAT Workshop", Genève, Aug 29 - Sep 02, 2010

43