Characterization of fission ionization chambers using reference neutron beams

Activity part of the JRA2 of EFNUDAT

M. Mosconi¹, R. Nolte¹, A. J. M. Plompen², C. Rouki², P. Dessagne³, M. Kerveno³, and J. C. Thiry³

- 1. Physikalisch-Technische Bundesanstalt (PTB)
- 2. Institute for Reference Materials and Measurements (IRRM)
- 3. Institute pluridisciplinaire Hubert Curien (IPHC)

Summary and motivation

- Necessity to improve the accuracy of n_flux measurements to reduce the uncertainty in the related cross sections.
 Is 2% achievable?
 - 1. discussion of the uncertainties related to the analysis of fission chamber data
 - 2. comparison with the primary standard
 - 3. intercomparison between IRMM, IPHC, and PTB chambers
- H19, H21 PTB fission chambers are transfer instrument (n_TOF, n_ELBE, UCL, iThemba, TSL), but the last intercomparison was 20 years ago

Intercomparisons

	 PTB chambers irradiated at different institutes
Previous key comparison	o Fast neutron fluence rate with respect to different flux measuring devices
1990	o Quantity compared: detector sensitivity

o Standard deviation of the results 1-2 %

Current comparison

03.09.2010

- PTB, IRMM, IPHC chambers, RTP1, and 2"x2" NE213 irradiated at the same conditions at 2 energies
- comparison of the measured target yield from standard (quasi-)monoenergetic fields

Irradiations with monoenergetic neutrons

D(d,n)³He: 8.4 MeV T(d,n)⁴He: 15 MeV

Monitoring

- Charge
- Long counters
- NE213 scintillator

NE213 Long counter NM

Neutron flux detectors: proton recoil telescope and TOF scintillator

General problem with d-beams: non-monoenergetic neutrons

Solutions: reliable gas out and TOF measurements

simulations

Monitoring

Solid target:

Monitor readings corrected for 1.005 scattering by the detectors in the beam 1

Stability of the monitor ratios within 1%

Gas target:

Monitor readings corrected for gas pressure, gas out contribution and scattering by the detectors in the beam

Stability of the monitor ratio within 2.5%

Characterization of fission chambers

Fluence relative to (n,p) cross section

Telescope $E_p = E_n \cos^2 \theta$

03.09.2010

A well characterized scintillation detector can be a fluence detector

Very sensitive

Good time resolution

Fluence by scintillators: TOF and traceability

Uncertainty in flux determination with RPT1

Compared instruments (PTB H19 H21)

9

Compared instruments (IRMM and IPHC chambers)

FC 16/30 IPHC

Parameters

	²³⁵ U ₃ O ₈ /layer 1	²³⁵ UF ₄ /layer 2
Ø/mm	1016	70
m _u /mg	49.02	12.46

FC 3/200M IRMM

Parameters

	²³⁵ UF ₄
Ø/mm	70
m _u /mg	117.80

03.09.2010

Fission chamber analysis

$$\mathbf{N}_{\mathbf{f}} = \varepsilon \mathbf{f}_1 \mathbf{f}_2 \Phi \mathbf{N}_{\mathbf{U}} \sigma$$

Sources of uncertainty:

- 1. U mass uncertainty
- 2.²³⁵U, ²³⁸U cross sections
- 3. zero bias efficiency ϵ
- 4. f₁ events below threshold
- 5. f₂ in-scattering correction
- 6. identification of fission events

Fission chamber uncertainties

Characterization of fission chambers

12

Number of fission events

ϵ efficiency, f₁ events below threshold

f₂ in-scattering correction

Gayther recommended corrections

1.2 ± 0.9 % at 144 keV 1.6 ± 0.9 % at 14.8 MeV

MCNP simulations

deviations from recommended values

Updated uncertainty in the inscattering correction: 0.2%, but Gayther corrections are still used for the current results

03.09.2010

Measuring technique

- Irradiation at the same beam conditions
- Background measurements (gas out, shadow cone, and free field) for every detector
- Sequence of irradiations:

1.PTB telescope – flux determination

- 2.DD beam inspection and additional flux measurements
- 3. Fission chambers in sequence

Results

03.09.2010

Thank you for your attention

