EFNUDAT synergies in astrophysics

F. Käppeler
Karlsruhe Institute of Technology

- astrophysics

- weak s process in massive stars
- examples: ${ }^{62} \mathrm{Ni},{ }^{64} \mathrm{Ni}$, and ${ }^{22} \mathrm{Ne}$

mutual benefits

\Rightarrow astrophysical techniques and applications:

- high power target for ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})$, DAQ with flash ADC
- (n, γ) measurements on ${ }^{231} \mathrm{~Pa},{ }^{235,238 \mathrm{U}}$ by activation
\Longrightarrow EFNUDAT activities of relevance for astrophysics:
- improved data for weak s process in massive stars
- examples: ${ }^{62} \mathrm{Ni}(\mathrm{n}, \gamma),{ }^{64} \mathrm{Ni}$, and ${ }^{22} \mathrm{Ne}$
in addition to ${ }^{24,25,26 \mathrm{Mg}}$ by Cristian Massimi and the ${ }^{7}$ Li spectrum definition by Claudia Lederer

origin of the elements

Nuclear Astrophysics: how and where are the chemical elements produced?

current GCE models find deficit in the mass region of the weak s process
s abundances are determined by (n, γ) cross sections
important to improve cross sections

weak s process - conditions at stellar site

stellar site: \quad massive stars with $M \mathbf{~} \mathbf{8} \mathrm{M}_{\odot}$

	core He-burning
temperature	$3-3.5 \cdot 10^{8} \mathrm{~K}$
neutron density	$10^{6} \mathrm{~cm}^{-3}$
neutron source	${ }^{22} \mathrm{Ne}(\alpha, \mathrm{n})$

> shell C-burning
> $\sim 1 \cdot 10^{9} \mathrm{~K}$
> $10^{11}-10^{12} \mathrm{~cm}^{-3}$
> ${ }^{22} \mathrm{Ne}(\alpha, \mathrm{n}),{ }^{13} \mathrm{C}(\alpha, n)^{16} \mathrm{O}$

- neutron exposure in the C shell comparable with core He-burning
- material from core He-burning is reprocessed during shell C-burning
- important: weak s component goes together with r process

nuclear data needs

s-process abundances are determined mainly by Maxwellian averaged neutron capture cross sections for thermal energies of $k T=25-90 \mathrm{keV}$.
weak s process NOT in flow equilibrium

persisting experimental problems:

- small cross sections
- resonance dominated
- contributions from direct capture

the case of ${ }^{62} \mathrm{Ni}$

- strong propagation effect for abundances of weak s process

first results for ${ }^{62 \mathrm{Ni}}$

C. Lederer \& n_TOF collaboration, NIC-XI, 2010

recent TOF measurements (courtesy I. Dillmann)

activation technique at $k T=25 \mathrm{keV}$

- neutron production via ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$ reaction at $E_{p}=1912 \mathrm{keV}$.
- induced activity measured after irradiation with HPGe detectors.

- possible if product nucleus is radioactive
\checkmark high sensitivity \longrightarrow small sample masses or small cross sections
\checkmark natural samples possible, isotopic enrichment not required
\checkmark Direct Capture component included

Karlsruhe activations for weak s process

The propagation effect of cross section uncertainties into the abundance distribution of the weak s process was confirmed by a series of activation measurements at 25 keV [e.g. PRC 77 (2008) 015808; 78 (2008) 025802; 79 (2008) 065802]

$$
\begin{aligned}
& \text { limited to } \mathrm{kT}=25 \mathrm{keV} \text {, } \\
& \text { but }
\end{aligned}
$$ data also needed for $\mathrm{kT}=90 \mathrm{keV}$

PTB - EFNUDAT activations at $k T=52 \mathrm{keV}$

${ }^{3} \mathrm{H}(\mathrm{p}, \mathbf{n}){ }^{3} \mathrm{He}$

$\mathrm{kT}=52 \mathrm{keV}$

${ }^{64} \mathrm{Ni}(\mathrm{n}, \gamma) @ k T=52 \mathrm{keV}$

- consistent with previous measurement at 25 keV ,
- confirming the correct energy dependence of the cross section

the case of ${ }^{22} \mathrm{Ne}(\mathrm{n}, \gamma)$

- at the onset of He burning ${ }^{22} \mathrm{Ne}$ is the most abundant "heavy" isotope.
- it represents the major neutron source in massive stars
- at the same time it is an important neutron poison for the s process
- the analysis of TOF data from the keV region exhibits a clear mismatch for the thermal value

EFNUDAT measurement at IKI Budapest


```
-10 MW Research Reactor
- thermal flux 2.2.1014 cm-2\mp@subsup{s}{}{-1}
- guided cold neutron beam
    (7.107 cm-2 - -1
```

- high pressure gas cells (loaded with 30 to 100 bar)
- enriched ${ }^{22} \mathrm{Ne}$ gas (98.87\%) with CH_{4} admixture
- measurement relative to H cross section standard
- PGAA analysis using BGO guarded HPGe detector

EFNUDAT measurement at IKI Budapest

$$
\begin{aligned}
& \sigma_{\mathrm{th}}=44.5 \quad 2.8 \mathrm{mb} \text { (literature) } \\
& \sigma_{\text {pred }} \sim 54 \mathrm{mb}
\end{aligned}
$$

this work:
$\sigma_{\mathrm{th}}=52.7 \quad 0.7 \mathrm{mb}$

summary

EFNUDAT synergies for astrophysics:

- supported access to other facilities,
- new and intensified collaborations,
- innovative approaches (AMS),
- full solutions: TOF studies on Fe and Ni isotopes for high $k T$

