EFNUDAT synergies in astrophysics

F. Käppeler Karlsruhe Institute of Technology

- weak s process in massive stars
- examples: ⁶²Ni, ⁶⁴Ni, and ²²Ne

mutual benefits

→ astrophysical techniques and applications:

- high power target for ⁷Li(p,n), DAQ with flash ADC
- (n, γ) measurements on ²³¹Pa, ^{235,238}U by activation

→ EFNUDAT activities of relevance for astrophysics:

- improved data for weak s process in massive stars
- examples: ${}^{62}Ni(n,\gamma)$, ${}^{64}Ni$, and ${}^{22}Ne$

in addition to ^{24,25,26}Mg by Cristian Massimi and the ⁷Li spectrum definition by Claudia Lederer

origin of the elements

Nuclear Astrophysics: how and where are the chemical elements produced?

current GCE models find deficit in the mass region of the weak s process

s abundances are determined by (n, γ) cross sections

important to improve cross sections

weak s process – conditions at stellar site

stellar site: massive stars with $M > 8M_{\odot}$

	core He-burning	shell C-burning
temperature	3-3.5-10 ⁸ K	~1-10 ⁹ K
neutron density	10 ⁶ cm ⁻³	10 ¹¹ -10 ¹² cm ⁻³
neutron source	²² Ne(α,n)	²² Ne(α,n), ¹³ C(α,n) ¹⁶ O

- neutron exposure in the C shell comparable with core He-burning
- material from core He-burning is reprocessed during shell C-burning
- **important:** weak *s* component goes together with *r* process

nuclear data needs

s-process abundances are determined mainly by Maxwellian averaged neutron capture cross sections for thermal energies of kT=25 – 90 keV.

weak s process NOT in flow equilibrium

persisting experimental problems:

- small cross sections
- resonance dominated
- contributions from direct capture

the case of ⁶²Ni

first results for ⁶²Ni: C. Lederer & n_TOF collaboration, NIC-XI, 2010

activation technique at kT=25 keV

- neutron production via ⁷Li(p,n)⁷Be reaction at $E_p = 1912$ keV.
- induced activity measured after irradiation with HPGe detectors.

possible if product nucleus is radioactive
 ✓ high sensitivity → small sample masses or small cross sections
 ✓ natural samples possible, isotopic enrichment not required
 ✓ Direct Capture component included

Karlsruhe activations for weak s process

The propagation effect of cross section uncertainties into the abundance distribution of the weak *s* process was confirmed by a series of activation measurements at 25 keV [e.g. PRC 77 (2008) 015808; 78 (2008) 025802; 79 (2008) 065802]

PB - EFNUDAT activations at *kT=*52 keV

³H(p,n)³He

kT = 52 keV

⁶⁴Ni(n, γ) @ *kT*=52 keV

will be complemented
over full energy range
by n_TOF measurements

- consistent with previous measurement at 25 keV,
- confirming the correct energy dependence of the cross section

the case of $^{22}Ne(n,\gamma)$

- at the onset of He burning ²²Ne is the most abundant "heavy" isotope.
- it represents the major neutron source in massive stars
- at the same time it is an important neutron poison for the s process
- the analysis of TOF data from the keV region exhibits a clear mismatch for the thermal value

$$\sigma_{th}$$
 = 44.5 2.8 mb (literature)
 σ_{pred} ~ 54 mb

EFNUDAT measurement at IKI Budapest

- 10 MW Research Reactor
- thermal flux 2.2.10¹⁴ cm⁻²s⁻¹
- guided cold neutron beam (7.10⁷ cm⁻²s⁻¹)

- high pressure gas cells (loaded with 30 to 100 bar)
- enriched ²²Ne gas (98.87%) with CH₄ admixture
- measurement relative to H cross section standard
- PGAA analysis using BGO guarded HPGe detector

EFNUDAT measurement at IKI Budapest

EFNUDAT synergies for astrophysics:

- supported access to other facilities,
- new and intensified collaborations,
- innovative approaches (AMS),
- full solutions: TOF studies on Fe and Ni isotopes for high kT