Transverse-to-Longitudinal Emittance Exchange Using an RF Deflecting Cavity

V. Dolgashev for P. Emma

3 September, 2010

ICFA Beam Dynamics Mini-Workshop on Deflecting/ Crabbing Cavity Applications in Accelerators

Cockcroft Institute, 1-3 September 2010

Motivation-1 (for X-Ray FEL)

$$arepsilon_{_{N}}\!<\!\gammarac{\lambda_{_{\! r}}}{4\pi}$$

 $arepsilon_{_N} < \gamma rac{\lambda_r}{4\pi}$ Transverse emittance must be < radiation wavelength (e.g., $arepsilon_{_N} < 1~\mu\mathrm{m}$ at $\lambda_r \sim 1~\mathrm{\AA}$)

$$\sigma_{\delta} < \rho \approx \frac{1}{4} \left(\frac{1}{2\pi^2} \frac{I_{pk}}{I_A} \frac{\lambda_u^2}{\beta \varepsilon_N} \left(\frac{K}{\gamma} \right)^2 \right)^{1/3}$$
 Energy spread must be < ρ , the FEL parameter (e.g., $\sigma_{\delta} < 0.04\%$)

So we need $\gamma \varepsilon_x < 1 \ \mu \text{m}$, and also $\gamma \sigma_z \sigma_z \equiv \gamma \varepsilon_z < 100 \ \mu \text{m}$ While RF guns produce $\gamma \varepsilon_x \sim \gamma \varepsilon_z \sim 1-3 \ \mu \text{m}$

Can we reduce $\gamma \varepsilon_x$ at the expense of $\gamma \varepsilon_z$?

Motivation-2 (for X-Ray FEL)

- Very bright beam from RF guns are susceptible to a μ-bunching instability (M. Borland, et al.).
- This can be controlled by increasing the intrinsic (slice) energy spread (Landau damped in bunch compressors)
 - requires a laser heater, but degrades 6D brightness!

Final LCLS long. phase space at 14 GeV for initial modulation of 1% at λ_0 = 15 $\mu{
m m}$

Strategy for FEL

- Use 'flat-beam injector' to generate a beam such as: $\gamma \varepsilon_x \sim 10~\mu m$, $\gamma \varepsilon_y \sim 0.1~\mu m$, and $\gamma \varepsilon_z \sim 0.1~\mu m$
- **Exchange emittances (bends + RF deflector):** $\gamma \varepsilon_x \leftrightarrow \gamma \varepsilon_z$
- \blacksquare Saturate FEL at 0.4~Å with no μ -bunching instability

Flat Beam Injector (FNAL)

(Y. Derbenev), (R. Brinkmann, Y. Derbenev, K. Flöttmann), (D. Edwards ...), (Y.-E Sun)

experiment

simulation

* Ph. Piot, Y.-E Sun, and K.-J. Kim, Phys. Rev. ST Accel. Beams 9, 031001 (2006)

Introduce Transverse RF Deflecting Cavity

Now introduce a rectangular transverse RF cavity operating in TM_{110} mode...

$$E_z = \frac{V_0}{l} \frac{x}{a} \cos \omega t \approx \frac{V_0}{l} \frac{x}{a},$$

$$B_{y} = \frac{V_{0}}{l} \frac{x}{a\omega} \sin \omega t \approx \frac{V_{0}}{cl} \frac{z}{a}.$$

Emittance Exchange Beamline

Transverse RF cavity (TM₁₁₀) in a double dog-leg...

- Particle at position x in cavity gets acceleration: $\Delta E/E \equiv \delta \approx kx$
- This energy deviation δ in cavity causes position change: $\Delta x = \eta \delta$
- Choose k to cancel initial position: $\Delta x \approx \eta k x = -x \rightarrow \eta k = -1$

Emittance Exchanger Transfer Matrix

$$\xi\!\equiv\!R_{56}$$
 of dog-leg

 $\overline{x,z}$ mapping (ignore y coordinate here)

$$\mathbf{R}_{1} = \begin{pmatrix} 1 & L & 0 & \eta \\ 0 & 1 & 0 & 0 \\ 0 & \eta & 1 & \xi \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{R}_{k} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & k & 0 \\ 0 & 0 & 1 & 0 \\ k & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{R} = \mathbf{R}_{1} \mathbf{R}_{k} \mathbf{R}_{1}$$

Full Emittance Exchanger

If RF deflector voltage is set to: $k = -1/\eta$ $k = \frac{eV_0}{cF}$,

$$k \equiv \frac{eV_0}{aE}$$
,

$$\mathbf{R} = \begin{pmatrix} 0 & 0 & kL & \eta + kL\xi \\ 0 & 0 & k & k\xi \\ k\xi & \eta + kL\xi & 0 & 0 \\ k & kL & 0 & 0 \end{pmatrix}$$

...then transverse (bend-plane) and longitudinal emittances are completely exchanged.

$$\epsilon_x = \epsilon_{z0}$$
$$\epsilon_z = \epsilon_{x0}$$

Emittance Exchange Limitations

4x4 transfer matrix is four 2x2 blocks¹:

$$\mathbf{R} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

symplectic conditions

$$\mathbf{R} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}, \quad \mathbf{A} + \mathbf{C} = \pm 1, \quad \mathbf{A} = \mathbf{D}, \quad \mathbf{B} = \mathbf{C},$$

$$\mathbf{\sigma}_{x} = \varepsilon_{x_{0}} \mathbf{Q}_{x} \mathbf{Q}_{x}^{T}, \quad \mathbf{Q}_{x} \equiv \frac{1}{\sqrt{\beta_{x}}} \begin{bmatrix} \beta_{x} & 0 \\ -\alpha_{x} & 1 \end{bmatrix},$$

$$\lambda^2 \equiv tr \{ \mathbf{U} \mathbf{U}^T \} = U_{11}^2 + U_{12}^2 + U_{21}^2 + U_{22}^2 \ge 0,$$

$$\mathbf{U} = \mathbf{Q}_x^{-1} \mathbf{A}^a \mathbf{B} \mathbf{Q}_z.$$

projected emittances are²...

$$\begin{split} & \varepsilon_{x}^{2} = \left| \mathbf{A} \right|^{2} \varepsilon_{x_{0}}^{2} + \left(1 - \left| \mathbf{A} \right| \right)^{2} \varepsilon_{z_{0}}^{2} + \varepsilon_{x_{0}} \varepsilon_{z_{0}} \lambda^{2}, \\ & \varepsilon_{z}^{2} = \left(1 - \left| \mathbf{A} \right| \right)^{2} \varepsilon_{x_{0}}^{2} + \left| \mathbf{A} \right|^{2} \varepsilon_{z_{0}}^{2} + \varepsilon_{x_{0}} \varepsilon_{z_{0}} \lambda^{2}. \end{split}$$

Equal emittances remain equal. (if $\varepsilon_{x_0} = \varepsilon_{z_0}$ then $\varepsilon_x = \varepsilon_{z_0}$)

Equal, uncoupled emittances cannot be generated unequal, uncoupled emittances³. (Setting $|\mathbf{A}| = \frac{1}{2}$ produces equal emittances, but then they are highly coupled with $\lambda^2 \neq 0$.)

- [1] K.L. Brown, SLAC-PUB-2370, August 1980.
- [2] Thanks to Bill Spence.
- [3] E. Courant, in "Perspectives in Modern Physics...," R.E. Marshak, ed., Interscience Publishers, 1966.

Emittance Exchange Simulation Parameters

Parameters (20 pc bunch charge)	symbol	value	unit
Electron energy	E	216	MeV
Dipole magnet length	L_{R}	20	cm
Drift length between dipole magnets	<u>L</u>	1	m
Bend angle per dipole magnet	$\boldsymbol{\theta}$	20	deg
Length of rec. RF cavity	L_{c}	30	cm
Initial horizontal norm. emittance	$\gamma \mathcal{E}_{x}$	9.92	μ m
Initial longitudinal norm. emittance	$\gamma \varepsilon_z$	0.080	μ m
Initial rms bunch length	$\sigma_{\!z}^{G}$	51	μm
Initial rms slice energy spread	$\sigma_{\!\!E}^{\;G}$	0.9	keV
Initial energy chirp (δ - z slope)	h	6.9	m ⁻¹
Initial horizontal beta function	$\beta_{\!\scriptscriptstyle X}$	100	m
Initial horizontal alpha function	$\alpha_{_{\chi}}$	0	

Evolution of Transverse Emittance Along Simulated Photo-Injector Beamline (to 216 MeV)

Transverse phase space (left two plots) and longitudinal phase space (right two plots) before (top) and after (bottom) emittance exchange.

Cavity Thick-Lens Effect Requires Some Attention

Need **extremely** stable energy (0.5×10⁻⁶ rms jitter \Rightarrow 10% x-beam size jitter)

ANOTHER IDEA: Femtosecond Bunch Trains from Phase Space Exchange Technique

- Multi-slit mask is used to establish a transverse modulation
- Exchanger maps this modulation into temporal

Measurement of Exchange System (FNAL)

4×4 matrix measurement vs. RF power

Both on-diagonal 2×2 sub-matrices = 0 at full RF power ($k/k_0 = 100\%$)

T. Koeth, Linac'08

Summary

- Simulations of flat-beam gun with emittance exchanger suggest possible levels of: $\gamma \varepsilon_z \approx 10 \ \mu \text{m}, \ \gamma \varepsilon_y \approx 0.005 \ \mu \text{m}, \ \gamma \varepsilon_x \approx 0.16 \ \mu \text{m}$
- This beam allows shorter wavelength FELs and/or smaller, lower cost accelerators
- The resulting large z-emittance should also Landaudamp the micro-bunching instability
- Sensitivity to energy jitter may be Achilles heel
- Transverse RF opens great new potential!