2nd ICFA Beam Dynamics Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators

September 2, 2010

at Cockcroft Institute

The Short Pulse X-ray Generation Project at the SPring-8.

T. Nakazato, T. Fujita and H. Hanaki, SPring-8

K. Hosoyama, K. Hara, A. Honma, A. Kabe, Y. Kojima, Y. Morita, H. Nakai, K. Nakanishi, K. Akai, K. Ebihara, T. Furuya, S. Mitsunobu, M. Ono and Y. Yamamoto, KEK

M. Matsuoka, M. Monde, K. Sennyu and T. Yanagisawa, MHI

XFEL (8GeV) Complete: Acc. structures Oct., 2010: Conditioning Feb., 2011: Test accel.

8GeV Storage Ring

XFEL

Contents

- Outline of short X-ray generation at SP8.
- Conceptual design and problem (phase noise).
- X-ray pulse width and intensity.
- Phase noise source hunting at KEK.
- Simulation of phase noise suppression by PLL
- R&D of components
 - 300kW fast phase shifter.
 - Current supply for the phase shifter.
 - •SP8-type tuner.

Design concept

- Upgrade of the Storage Ring with minor exchange.
- Experiments in the region from pico to sub-pico second. (see Yuelin Li' talk, on Wed.)
- A stable and reasonably intense short X-ray with high repetition rate. (complemental feature with XFEL)
- Install in one of four long straight sections.

(inherent advantage of SP8)

- No disturbance to the other users.
 (coexistent <u>w/o emittance degradation</u>)
- Minimize R&D items. ←KEK crab cavity
- Settle down superconducting technology at SP8.

Concept design of a short pulse generator $\varepsilon_x = 3nmrad, \varepsilon_y = 3pmrad$ 60 βx ν x=40.15 50 ν y=18.36 βv ξ́ x=2.0 n x*100 40 40 μ 30 θ *ξ* y=2.0 *η* y*100 20 10 0 $\lambda_{\mu} = 10mm$ -25 -20 -15 -105 10 15 20 25 -5 0 ds [m] Gap = 5mmSuperconducting Crab Cavities (4 Sets) Mini-pole Undulator $N_{u} = 101$ $V_{\perp} = 1.67 MV$ Steerers 20*mm* <u>ا ، 2000 مل 3000 ما</u> Quads (exist) $27m^{-1}$ Slit #2 Slit #1 Required RF phase stability 14 mdeg (0.24mrad) ! Side View of a Bunch

Layout of short X-ray generation system

Cross section of the storage ring

Crab Cavity and Cryostat

QL=1E+5 for TM110 (deflecting mode)

QL=1E+4 for TM010 (LOM)

RF parameters

- •Cavity Type
- •Number of Cavities
- •Deflecting Frequency
- •Deflecting Mode
- •R/Q
- •Loaded Q (Q_L)
- •RF power
- •Length of Drift Space
- •Deflecting Voltage
- •Bunch Tilting $\tan \theta_{tilt}$
- •Phase control stability

Superconducting Crab Cav. 4 or 2 508.58 MHz TM110 46.7Ω 1×10^{5} 150 kW/Cavity 10 m $1.67 \mathrm{MV}$ 0.044 at 4GeV 0.022 at 8GeV 14 mdeg (0.24mrad)

Light spectrum for 100% efficiency

multiply 6.3×10^2 (4GeV) or 1.7×10^2 (8GeV) for the 1st order peak.

Pulse width and extraction efficiency

Pulse shaping by an asymmetric crystal

Strong Constraint !

1)Bragg condition $\lambda = 2 d \sin \theta_B$ 2)Short pulse condition

$$\cos\theta_{out} = -\sin\left(\frac{\theta_{in}}{2} - \frac{\theta_{in}^{max}}{2}\right) / \sin\left(\frac{\theta_{in}^{max}}{2}\right) \quad \tan\frac{\theta_{in}^{max}}{2} = \left(\frac{\sigma_{y0}^{*2}}{\sigma_{s0}^{*} \tan^{2} \theta_{iilt}} + 1\right) \tan\theta_{iilt}$$

$$\int_{0}^{\infty} \frac{1}{\sigma_{s0}^{*}} \int_{0}^{\infty} \frac{1}{\sigma_{$$

X-ray Energy vs. pulse width

Source Hunting of Phase Vibration at KEK

Vibration Measurement at KEK

Tuner side 2X, 2Y, 2Z

Large beam pipe side 1X, 1Y, 1Z

Who makes phase noise?

He Pressure v.s.

asynchronous

Mechanical Vibration

Electric noise (| Master Oscillator & | Klystron)

Vibration measurement of KEK-B Superconducting Cavity (1)

Forced vibration experiments of a KEKB SC Cavity

Vibration Modes of Crab Cavity

Sensitivity of vibration mode to RF resonant frequency.

Vibration measurement — Hammering —

PLL phase suppression function

Simulation result of phase noise suppression by PLL

Development 300kW fast phase shifter

Improvement of phase shifter

Frequency Response of Phase Shifter

High power test of phase shifter

Frequency Response of Power Supply for Phase Shifter

Test of SP8-type tuner

Spring loads

(cavity stiffness)

360kgF/mm

Motor + piezo

Summary

- Available X-ray: 2psec at 8GeV and 0.6psec at 4GeV using mini-pole undulator. (2 σ p)
- Double-slit method is more practical than asymmetric crystal.
- Key technology: phase stability within ± 0.014 deg.
- Phase noise source hunting:

LHe pressure noise < 10 Hz. \rightarrow can be suppressed with tuner Mechanical vibration from 10 to 1kHz.

 \rightarrow can be suppressed with phase shifter

Electric noise (Klystron & SG) >1kHz.

 \rightarrow can ignore by employing one klystron scheme.

- FEM Analysis of mechanical vibration agrees with measured phase noise. →can estimate phase noise from mechanical vibration data.
- PLL simulation using phase suppression function.
- \rightarrow can realize phase stability within ± 0.014 deg
- Complete: 300kW CW phase shifter.
- Under test: power supply of phase shifter & SP8 type tuner.