

Short Pulse X-ray (SPX) at the Advanced Photon Source

A. Nassiri

Advanced Photon Source

ICFA Beam Dynamics Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators
The Cockcroft Institute, Daresbury, UK
September 2010

Outline

- APS Upgrade
- SPX scheme using deflecting cavities
- Technical systems
- R&D
- Summary

APS Upgrade

- The APS Upgrade (APS-U) project at Argonne National Laboratory (ANL) will provide high-energy, high-average-brilliance, short-pulse, penetrating hard x-rays in the range above 25 keV with:
 - Nanoscale focal spots reaching < 5 nm above 25 keV;
 - Time resolution down to 1ps;
 - New or improved x-ray beamlines;
 - The technical capabilities required to fully exploit these upgraded technical components

	, 1	10	<u>'</u>
		Present	Upgrade
Electron energy (GeV)		7	7
Stored current (mA)		100	150 ~200 mA
Effective emittance (nm)		3.15	≤ 3.5
Vertical emittance (pm)		35	10 ~50
Top-up interval		≥ 60 s	≥ 30 s
Fill patterns		24&324 bunch Hybrid mode	24&324 bunch Hybrid mode
Operational single bunch limit (mA)		16	16
Straight section length (m)	Q2 Q2	4.8	4.8 ~7.7
	GZ GZ	2	

Scientific Goal:

Generate short x-ray pulses using crab-cavity-based method.

Technical Goal:

Conduct R&D to demonstrate proof of concept which will lead to design and implement of a fully integrated SRF deflecting cavities system for the APS storage ring.

SPX Performance Parameters

	Peak Value	Requirement
Current	202 mA	
Energy	7 GeV	
Rf frequency	2815.44 MHz	
RF voltage	2/4 MV	
Number of cavities	8/16	
CM voltage ampl variation	< 1%	Keep intensity and pulse length variation under 1%
CM phase variation	<7 deg	Keep intensity variation under 1%
Voltage ampl mismatch error between cavities	<0.5%	Keep emittance variation under 10% of nominal 35 pm
Voltage phase mismatch error between cavities	< 0.03 deg	Keep beam motion under 10% of beam size/divergence
R _s f _{HOM} for one monopole HOM	0.5 MΩ-GHz	
R _s for one monopole at 2 GHz	0.25 M $Ω$	
R _t for one x-plane HOM	1.5 MΩ/m	
R _t for one y-plane HOM	4.5 MΩ/m	
Cavity electric center alignment within cryomodule	~ ± 0.3 mm	
Cavity tilt inside cryomodule	~ ± 5 mrad	Increase horizontal emittance by 5%
Max beam emittance, $\varepsilon_{\rm x}$ (unperturbed), $\varepsilon_{\rm y}$ (unperturbed), $\varepsilon_{\rm y}$ (w/ cavities)	2.7 nm-rad, 35 pm-rad, 50 pm-rad	

SPX Layout

Technical Systems

- Cavities
- Cryomodule
- Cryogenics
- Low-level RF
- High-power RF and waveguide distribution
- Beam diagnostics
- Timing and synchronization
- Controls/Interlocks/ Machine Protection System

Cavities

Single-Cell SC Cavity

Frequency	2815	MHz
Q _U	~10 ⁹	
V_t	0.5	MV
Energy	0.39	J
$k_{ }$	0.615	V/pC
(R/Q)'	17.8	Ohm
E _{peak} / V _t	83	1/m
B _{peak} / V _t	182	mT / MV
P _{loss}	7	W
I _{beam}	200	mA
Cavity Iris Rad	25	mm
Cavity Beam Pipe Rad	26	mm
Cavity Active Gap	53.24	mm
Q _{ext}	~ 10 ⁶	
Cells / Cavity	1	
No. Cavity	4 * 2	

Parameters for the Baseline Cavity

Details in Haipeng Wang's talk on Friday

2-cell Cavity Design Concepts

- 2-cell TM₁₁₀ cavity operating in the pi-mode suffers from magnetic field enhancement on the iris. Results in little net defelcting voltage improvement.
- 2-cell TM₁₁₀ cavity operating in the 0-mode is difficult to damp SPM pi-mode due to limited coupling to dampers.
- 2-1/2 cell Cavity
 - Center cell is used to couple the SPM into vertical damping waveguide.
 - 2 pi / 3 mode is not damped in the center cell and is utilized as the operating mode.
 - Difficult to manufacture and process centercell geometry.

Alternate Cavity Design

Alternate Cavity Benefits

- Larger stability margin for 200 mA beam current.
- Single excited LOM plus two LOM waveguides produce less rf loading of dampers (assuming dual LOM waveguides are used)
- More compact
- Alternate Cavity Disadvantages
 - Additional waveguide penetration for second LOM waveguide, if needed.
 - Unproven design features
 - Magnetic field enhancement?
 Numerical results show adequate damping without enhancement
 - Multipacting enhancement?
 Experimental and numerical results do not show a problem
 - More complex helium vessel

Details in Haipeng Wang's talk on Friday

Main Parameters

Preliminary Estimate of 2K Losses

2K Cryogenic Losses	
Static / Dynamic Losses due to Waveguides / Tuners per Cavity	2.4 W
Wall Losses per Cavity @ Q _u =10 ⁹	7.0 W
Static Heat Load due to Cryo Losses e.g., Beampipe	
Transistions / Supports	2.0 W
Total Heat Load (8 cavities) @	
$Q_u = 10^9$	79 W

Estimated System Parameters

System Parameters	
Slow Tuner Range	+/-200kHz
Number of Cavities per Cryomodule	4 (8)
Total Number of Cryomodules	2
Cavity Offset Alignment Tolerance	0.3 mm
Beam Offset Tolerance	0.05 mm
Klystron Power per Cavity	5 kW

- Helium vessel plates are integral with cavity end groups and utilize existing Nb material during construction.
- Thermal properties of 'uncooled' outer portion of end groups must be analyzed.

 Each helium vessel is fed individually by supply lines and a gas return pipe.

Helium vessel with waveguides and blade-tuner rings

Deflecting Cavity Cryomodule Insertion

Refrigeration

Refrigeration @4.3K:

- COP_{INV} = 70 W/W
- Carnot efficiency = 30%
- Input power required = 230 W per watt at 4.3K

Refrigeration @2K:

- COP_{INV} = 150 W/W
- Carnot efficiency = 18%
- Input power required = 830 W per watt at 2K

Refrigeration efficiency

Schneider, Kneisel, Rode, "Gradient Optimization for SC CW Accelerators," PAC2003

ELBE Cryoplant FZ-Rossendorf

- Cryoplant hall: 17m x 10m
- 220W @ 1.8K + 200W @ 80K, upgradeable to 380W with more comp & LN2 precooling
- 417kW at full load (220W)

Cryoplant Costs

- Requirements are calculated using
 - 312W for Q=1E9
 - 200W for Q=3E9
 - 161W for Q=1E10
 - 152W for Q=2E10
 - Same Qs, but ½ voltage
- Equivalent load includes 300W for 5-8K intercepts and distribution sys. losses and 200W equivalent for 40-80K shield load. This extra load is a fixed value and assumed to be independent of the 2K load.
- For cryoplants of this type, 1.8K operation adds 33% to plant size compared to 2.0K operation.

Load [W] @ operating temp	Equivalent load @ 4.5K [W]	Cost scaled from FNAL* [M\$]	Compressor power for 2.0K operation [kW]
270 (FNAL reference)	1230	8.0	295
312 (4MV @ Q=1E9)	1242	8.1	298
200 (4MV @ Q=3E9)	940	6.6	226
160.8 (4MV @ Q=1E10)	834	6.1	200
152.4 (4MV @ Q=2E10)	811	6.0	195
156 (2MV @ Q=1E9)	821	6.0	197
100 (2MV @ Q=3E9)	670	5.2	161
80.4 (2MV @ Q=1E10)	617	4.9	148
76.2 (2MV @ Q=2E10)	606	4.9	145

^{*}Fermilab is buying a new cryoplant for ILC string tests. Design capacity is 270W@2K + 300W@5-8K + 4500W@40-80K (= 1230W equivalent at 4.5K). Costs scale with the 0.7 power of plant capacity (per Byrns & Green, "An update on estimating the cost of cryogenic refrigeration," 1998).

Magnetic Field Electric Field

 $V_{z}(y) = V_{m} \cdot y$ Longitudinal voltage

$$V_{t} = j \frac{V_{m}}{\kappa_{o}}$$

 $V_{t} = j \frac{V_{m}}{\kappa_{o}}$ Vertical deflecting voltage

— Cavity Transverse Voltage

····· Cavity Longitudinal Voltage $/\kappa_o$ (y > 0)

RF Generator

power

$$P_{g}^{+} = \frac{V_{t}^{2}}{8\beta \left[\left(\beta + 1 + \frac{P_{B}}{P_{cav}} \right)^{2} + \left(2Q_{o} \right) \left(\left(\beta + 1 + \frac{P_{B}}{P_{cav}} \right)^{2} + \left(2Q_{o} \right) \left(\left(\beta + 1 + \frac{P_{B}}{P_{cav}} \right)^{2} \right) \right]$$

RF Generator

power

$$P_g^+ = \frac{V_t^2}{8\beta \left(\frac{1}{R} / Q \right) Q_o} \cdot \left[\left(\beta + 1 + \frac{P_B}{P_{cav}} \right)^2 + \left(2Q_o + \frac{1}{R} + \frac{P_B}{P_{cav}} + \frac{P_B}{P_{cav}}$$

$V_t \cdot y \le 0$ Tilted Beam No Detuning

- Beam Loading is offset and tilt dependent
- Unless the operating parameter space is constrained...
 - required generator dynamic range is nearly infinite and >180deg control range is needed
 - wide range in optimal loaded Q (~ 1 decade for examples shown)
- cavity-to-cavity electrical center alignment is important
- Loaded Q not only influences power requirements, but also influences specification on Machine Protection System against uncontrolled beam offset
- Need to consider longitudinal Robinson stability conditions for offset beam

Baseline HLRF System Design

 10kW klystron amplifiers, one per cavity

Common HVPS per sector

 Master HVPS switching clock to correlate noise

Alternate HLRF System Design

 20kW klystron amplifiers, each driving two cavities

 Magic-Tee hybrid used to split power

Common HVPS per sector

Diagnostics

Diagnostics to implement with source development:

- RF BPM upgrade is crucial in maintaining / controlling electron beam trajectory during SPX operation.
- RF phase detector measures bunch arrival time.
- RF tilt monitor measures the chirp/tilt inside and outside of the SPX.
- Optical diagnostics measures x-ray beam vertical profile, extracting information of electron phase, tilt angle and other information about the transverse deflection cavity operations.

Diagnostics to monitor residual effects

 Sensitive rf tilt monitors and synchronized x-ray photon measurements outside of the SPX will be used to minimize the impact of SPX on other users around the ring.

Requirements

Timing/Synchronization

- Master Oscillator
 - 351.9 MHz and 2815 MHz
- Crab cavity LLRF
 - 2815 MHz phase reference
 - Calibration reference
 - Local oscillator
 - ADC clock
- Phase reference for beamline lasers (laser-pump/x-ray probe)

- Timing/Reference for Diagnostics
 - Within SPX Zone
 - Beam arrival time monitor
 - Six BPMs
 - Two RF beam tilt monitors
 - X-ray based tilt monitor
 - Outside SPX Zone
 - Two RF beam tilt monitors
 - X-ray based tilt monitor
 - Synchronous detection of residual effects

Beamline lasers

- High-peak power Ti-Sapphire
 - Pulse duration: 50 fs
 - Repetition rate: 1-270 kHz
- High power, sub-cycle TH source
 - Pulse duration: <1 ps
 - Repetition rate: 1- 270 kHz

- UV to mid-IR source
 - Pulse duration: <100 fs
 - Repetition rate: 1-270 kHz
- High repetition-rate fiber laser system
 - Pulse duration: <200 fs
 - Repetition rate: 6.5 MHz

Specifications

- Cavity phase
 - <7 deg common mode</p>
 - ~7 ps @2815 MHz
 - Keep intensity variation <1%

- Beamline timing (Yuelin LI)
 - 100-200 fs stability (fraction of x-ray pulse width)
- S35 beamline timing (Bingxin Yang)
- $-\pm 0.03$ deg uncorrelated ($^{\sim}30$ fs @2815MHz Same as common mode ($^{\sim}7$ picoseconds)
 - Drift >100 Hz
 - Below 100 Hz corrected by orbit feedback system
 - Orbit motion <10% of beam size

LBNL Femtosecond-Phase Stabilization System

- Uses frequency offset in the optical domain
 - Optical frequency is offset by an RF frequency (110 MHz)
 - Offers a large leverage over stabilization in the RF domain
 - Six-order-of-magnitude

LBNL Results

- 2.2 km fiber
 - 19.4 fs rms @2850 MHz (60 hours)
- 200 m fiber
 - 8.4 fs rms @2850 MHz (20 hours)

Problem

- One meter of cable with
 - 7 ppm/degC
 - v/c=67%
- Results in ~50 fs/deg C
- The frequency offset process is equivalent to a heterodyning process
 - Heterodyne (mix) original optical frequency with the offset optical frequency
 - Changes in the optical phase translate to identical changes in the 110 MHz beat signal
 - One degree of phase change in the 1530 nm optical domain translates to 1 degree of phase change in RF domain ~21 attoseconds

R&D Elements

- Complete and test baseline and alternative cavities as a high priority (gradient, Q, Lorentz detuning, pressure sensitivity, HOM Q's)
- Develop tuner concepts for each option
- Develop cryomodule concept for either option
- Develop better options for mechanical alignment or cold adjustability
- Develop low-impedance cold bellows
- Evaluate HOM power above cut-off and where it goes
- Determine cavity to cavity isolation spec for LLRF control
- Evaluate multi-pole components for operating mode and coupling terms in transverse wakes from perturbations in symmetry
- Quantify Operating mode leakage into LOM waveguide (fabrication tolerance)
- Quantify effect of reflections from real loads & windows on achievable Q's
- Perform on-line test of realistic slice as early as possible to allow time for corrections (need to develop temporary cryo, controls & test plans)
- Make normal conducting high Q cavity and develop LLRF system
- Obtain Berkley system for 100fsec Synch
- Link cavity and pump laser through ~100m fiber
- Measure present laser jitter
- Add beam phase lock loop to Main Storage Ring RF with Beam Arrival Time
- Cavity Tilt Monitor

Summary

- Continuing collaboration with JLab on baseline and alternative cavities design and cryomodule
- Alternative cavity design provides more margin to instability threshold
 - Being investigated in parallel to baseline cavity
 - Encouraging initial results from prototype
- Will down select in R&D phase
- Design of damper and tuner will commence soon
- Design modifications for improved cavity-to-cavity alignment or adjustments will be investigated
- In the process of establishing a formal collaboration with LBNL on LLRF controller and timing/synchronization system
- We believe, overall technical solution looks feasible but challenging in key parameters.
 - Phase stability
 - HOM damping
 - Alignment
 - Impact on the APS storage ring reliability
- We have started a comprehensive R&D program to address these challenges in the next three years.

