400MHz Half-Wave Resonator Crab Cavity For LHC Upgrade

Zenghai Li

SLAC National Accelerator Laboratory

ICFA Deflecting Cavity Workshop, September 1-3, 2010 Cockcroft Institute, UK

Work supported by U.S. DOE under contract DE-AC02-76SF00515

Outline

- SLAC Crab cavity studies prior to LHC-CC09
- New design considerations
- Compact half-wave spoke resonator (HWSR) crab cavity
 - Cavity RF parameters
 - LOM, HOM-v damping couplers
 - HOM-h damping coupler
 - FP coupler
 - Multipacting analysis
- Summary

SLAC Crab Cavity Studies Prior to LHC-CC09

800 MHz Elliptical

Design complete

- Cavity shape optimized
- FP, LOM, SOM, HOM couplers designed
- Multipacting analyzed
- Sensitivity and tolerances studied
- Dimension fit global scheme

800 MHz Spoke

- Cavity shape preliminary study performed
- Cavity radius: ~150 mm
- Design could fit both global and local schemes

400MHz-Coaxial

- Cavity shape optimized
- FP, LOM, SOM, HOM couplers designed
- Multipacting analyzed
- Design could fit the global scheme, not the local scheme

New Design Considerations

- Compact size to fit in tight beam line separation at the crab cavity location
- 400 MHz in frequency
- Effective damping of unwanted modes (LOM & HOMs)
- Minimize potential multipacting

Cavity Size

Global Scheme: Beam-beam

separation: 420mm

Local Scheme: Beam-beam

separation: 194mm

- A single design for both local and global schemes
- Cavity dimension determined by local scheme (~145 mm)

Frequency: 800-MHz vs 400-MHz

400 MHz is chosen for the present design

Compact 400-MHz HWSR Crab Cavity

Half-Wave Spoke Resonator (HWSR)

TE11-like mode - Frequency determined by longitudinal and vertical dimensions

400 MHz HWSR Cavity Parameters

Parameters	
Cavity Width (mm)	290
Cavity Height (mm)	391.5
Cavity Length (mm)	580
Beam pipe radius (mm)	42
(R/Q) _⊤ (ohm/cavity)	215
E_S/V_T ((MV/m)/MV)	10.4
B_S/V_T (mT/MV)	19.5

- 8 MV deflecting voltage required
- 2 cavities/beam, 4 MV each

400-MHz HWSR Crab Cavity with Couplers

HWSR design fits in both global and local schemes

Shunt Impedance

Impedance Budget (LHC-CC09)

- Impedance requirement
 - Longitudinal (R): 80 kohm
 - Transverse (Z_T): 2.5 Mohm/m

Longitudinal shunt impedance

$$R_{L} = \left(\frac{R}{Q}\right) \bullet Q_{ext} = \frac{\left|V_{z}\right|^{2}}{\omega U} \bullet Q_{ext}$$

Transverse shunt impedance

$$R_{T} = \left(\frac{R}{Q}\right)_{T} \bullet Q_{ext} = \frac{\left|V_{z}(r_{0})\right|^{2}}{\omega U \left(\frac{\omega}{c}r_{0}\right)^{2}} \bullet Q_{ext}$$

Impedance for beam instability

$$Z_T = \left(\frac{Z_T}{Q}\right) \bullet Q_{ext} = \frac{\omega}{c} R_T$$

E. Shaposhnikova LHC-CC09

Summary:

longitudinal impedance budget

- Requirement for HOM damping in LHC given so far is 60 kOhm (defined by 200 MHz RF at 450 GeV)
- For nominal intensity
 - in 400 MHz RF system we have 80 kOhm for small emittance beam (1 eVs) at 7 TeV, 300 kOhm for 2.5 eVs
 - in 200 MHz RF system it is 70 kOhm, but the 400 MHz RF system can be used as Landau system
- Assumption: no loss of Landau damping due to broad-band impedance (ImZ/n > 0.1 Ohm, budget estimation in LHC DR - 0.07 Ohm), possible for small emittances (<0.7 eVs) at injection into 200 MHz RF system or at 7 TeV in the 400 MHz RF system (< 1 eVs)
- ➤ 10 kOhm for upgrade intensity and two identical cavities

16-Sep-09

Impedance & Stability

12

E. Shaposhnikova LHC-CC09

Summary:

transverse impedance budget

- Threshold for the nominal intensity and one cavity at 450 GeV determined by the damping time of 60 ms is 2.5 MOhm/m
- With margin for particle distribution:
 - $0.6/(1-f_r)$ MOhm/m f_r [GHz] < 0.8
 - $1.2(1+2f_r)$ MOhm/m f_r [GHz] > 0.8
 - 3 MOhm/m at 800 MHz → 0.4 MOhm/m for upgrade intensity and 2 cavities
- Additional factor proportional to local beta-function $\beta/\langle \beta \rangle$

LOM/HOM-v Couplers

- On beam pipe coax-coax LOM/HOM-v damping couplers
- To damp accelerating modes and vertical HOMs

WG Coupler vs Coaxial Coupler

Waveguide couplers become large at low frequencies

HOM and FPC Couplers

 Notch filter to reject deflecting mode

- Input coupler with magnetic coupling
- Eliminates direct coupling from FPC to LOM/HOM-v

HOM Coupler Notch Filter

- Enhanced damping of the 1st horizontal HOM mode at ~600 MHz
- Filter sensitivity: 1-MHz/20-micron

Damping of Dipole Modes

Damping of Accelerating

335 MHz, 337 MHz damp by down stream coupler

498 MHz, 526 MHz Damp by upstream coupler

780 MHz

LOM/v-HOM couplers damp accelerating and vertical HOM modes

Damping Qext

Effective damping demonstrated with these coupling schemes

Dipole Mode Beam Impedance

• Dashed line is the beam instability requirement for dipole modes

Acc. Mode Beam Impedance

Dashed line is the beam instability requirement for accelerating modes

Multipacting Analysis

- MP simulation performed for both operating mode and the LOM mode
 - Operating mode: deflecting voltage scanned up to 5MV
 - LOM: beam loss power scanned up to 10kW (on resonance, max)
- Regions scanned for MP
 - Cavity
 - LOM/HOM-v couplers
 - FPC coupler
 - HOM-h coupler

SEY for Niobium and Copper

Niobium: cavity body, HOM coupler loop

Copper: Inner conductor of FPC and LOM/VHOM couplers

MP Of Operating Mode (1)

- Impact energy of most resonant trajectories not at the SEY peak
- Only low impact energy resonant trajectories at operating voltage

MP of Operating Mode (2) - FPC Coupler

Resonant trajectories in the coax coupler region

- Impact energy higher on outer surface (Nb), lower on inner wall (Cu)
- Use coax of different impedance may help to mitigate the problem

MP of Operating mode (3) - HOM Coupler

• "square" rod

2-point MP between straight section of the loop and outer cylinder wall

Circular rod

MP significantly suppressed

MP of LOM Accelerating Mode

- Max beam power ~10 kW
- Resonant trajectories in BP coax above 4 kW beam power, with mostly high impact energy
- Resonant trajectories in coupler coax, with mostly low impact energy

Possible MP Improvements ...

 Coupler coax: coax of different impedance may minimize resonant conditions

(there are existing coaxial coupler operate at various power levels)

Beam-pipe coax region: using tapered coaxial geometry or grooves

•

Summary

- 400-MHz HWSR cavity fits both local and global schemes
- Cavity shape optimized to lower surface fields
- LOM/HOM-v/HOM-v couplers being optimized
 - Effective in damping
 - Current design meets beam instability requirements
- MP analyses performed
 - MP characteristics being analyzed no big surprises
 - Possible MP improvements being explored
- All necessary components for HWSR cavity optimized, design would meet requirements. Further optimization continues.
- Cavity and coupler model ready for preliminary engineering studies

