

ALICE Status

F Antinori

47th ALICE RRB, 30 October 2019

Contents

- Collaboration news
- Computing update
- Physics update
- LS2 upgrades update
- ITS3 upgrade
- Conclusions

Contents

- Collaboration news
- Computing update
- Physics update
- LS2 upgrades update
- ITS3 upgrade
- Conclusions

Participating Institutes 176 INSTITUTES – 40 COUNTRIES

- new Full Member Institute: Chungbuk National University (CBNU), Rep. of Korea
 - joins PDP project
- ongoing discussions with groups in Bolivia, Pakistan, Russia, ...

FA | ALICE RRB | 30 October 2019

Source: Alice Collaboration data base, 21 October 2019

New appointments

Michael Weber (Vienna)

Filip Krizek (Prague CTU)

Michael Winn (Saclay)

Andrea Dubla (GSI)

- Collaboration Board Chair
 - Silvia Masciocchi (GSI)
 - elected by CB on 28/8
 - took office on 1/10
- Run Coordination
 - Taku Gunji (Tokyo)
 - Federico Ronchetti (Frascati), Deputy
- Computing Resources Coordinator
 - Stefano Piano (Trieste)

- Physics Working Group Conveners
 - Dileptons, Quarkonia
 - Heavy Flavours
 - Jets
 - Ultraperiph., Diffraction Michal Broz (Prague CTU)
- Juniors' Representative
 - Fernando Flor (Houston)

Taking office on 1 January 2020

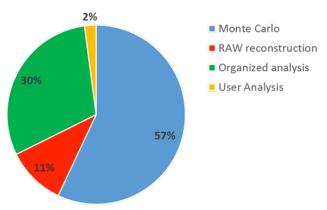
(already endorsed)

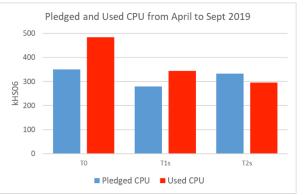
- Spokesperson
 - Luciano Musa (CERN)
 - elected by CB on 27/3

- Deputy Spokespersons
 - Barbara Erazmus (Nantes)
 - Mateusz Ploskon (Berkeley)
- Conference Committee Chairs
 - Roberta Arnaldi (Torino)
 - Dariusz Miskowiec (GSI)

- Physics Coordinator
 - Andrea Dainese (Padova)
- Deputy Physics Coordinators
 - Cvetan Cheshkov (Lyon)
 - Leticia Cunqueiro (Oak Ridge)
- Upgrade Coordinators
 - Jochen Klein (Torino)
 - Marco van Leeuwen (Nikhef)

Contents


- Collaboration news
- Computing update
- Physics update
- LS2 upgrades update
- ITS3 upgrade
- Conclusions



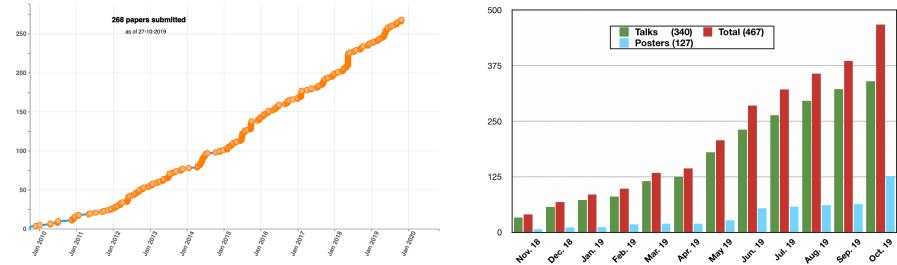
Resource usage

- increase in the fraction of CPU used for analysis
 - 20% in 2018 → 30 % in 2019
 - important effort for analysis of 2018 sample
- preparing for second pass through 2018 data
 - to be started before end of the year
- stable resource delivery from all tiers
- full utilisation of available CPU: 130 k jobs on average
- available disk capacity is sufficient
- unpopular data ~ 2% of total used space

CPU usage breakdown by job type (Jan - Oct 2019)

Contents

- Collaboration news
- Computing update
- Physics update
- LS2 upgrades update
- ITS3 upgrade
- Conclusions



A Large Ion Collider Experiment

Physics output

- going strong!
 - 268 papers on arXiv (average of 52 citations per paper, excluding self-cites)
 - several hundred conference presentations each year

ALICE Conference Committee (cumulative): November 2018 - October 2019

Pb

₹² €1.8

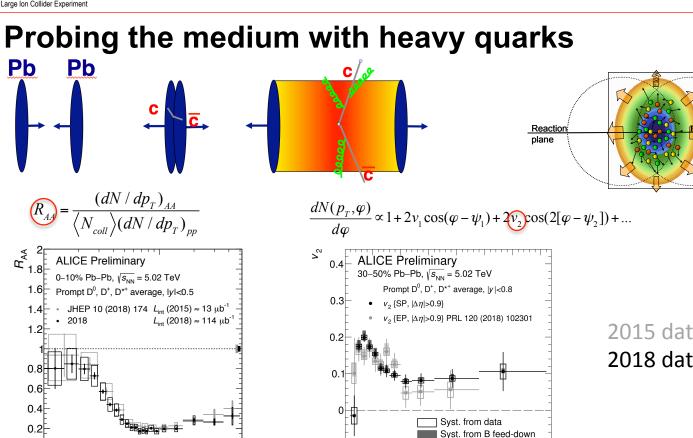
1.6

1.4

1.2

0.8

0.6 0.4


0.2

ALI-PREL-320131

10

FA | ALICE RRB | 30 October 2019

 $p_{_{T}}$ (GeV/c)

–0.1上

ALI-PREL-319375

5

10

25

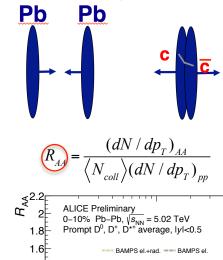
20

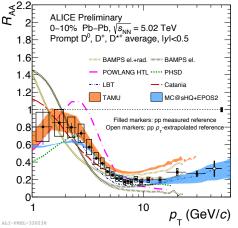
15

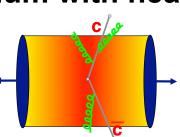
30

 p_{\perp} (GeV/c)

35




In-plane


2015 data sample 2018 data sample

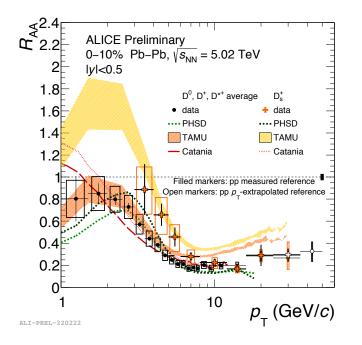
Probing the medium with heavy quarks

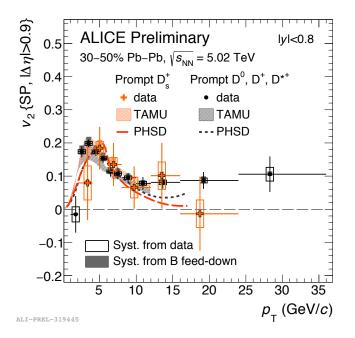
 $\frac{dN(p_T,\varphi)}{dN(p_T,\varphi)} \propto 1 + 2v_1 \cos(\varphi - \psi_1) + 2v_2 \cos(2[\varphi - \psi_2]) + \dots$ $d\varphi$

Reaction plane

- ν₂ {SP, ΙΔη|>0.9} 0.4 ALICE Preliminary lvl<0.8 . 30–50% Pb–Pb, $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$ 0.3 • Prompt D⁰, D⁺, D⁺⁺ average Syst. from data Syst. from B feed-down 02 0 TAMU ---- PHSD BAMPS el+rad BAMPS el POWLANG HTL -0. 25 30 35 20 p_ (GeV/c) ALI-PREL-319549
- simultaneous constraints from R_{AA} , v_2

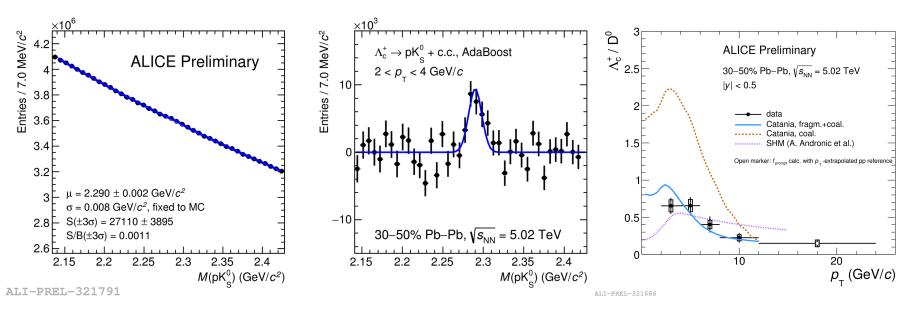
아이 lin-plane


- study interplay of effects
 - shadowing
 - collisional energy loss
 - radiative energy loss
 - coalescence
 - medium evolution


FA | ALICE RRB | 30 October 2019

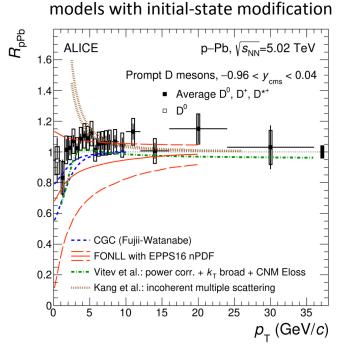
$\mathbf{D}_{\mathbf{s}}$

very sensitive to coalescence contribution



Λ_{c}

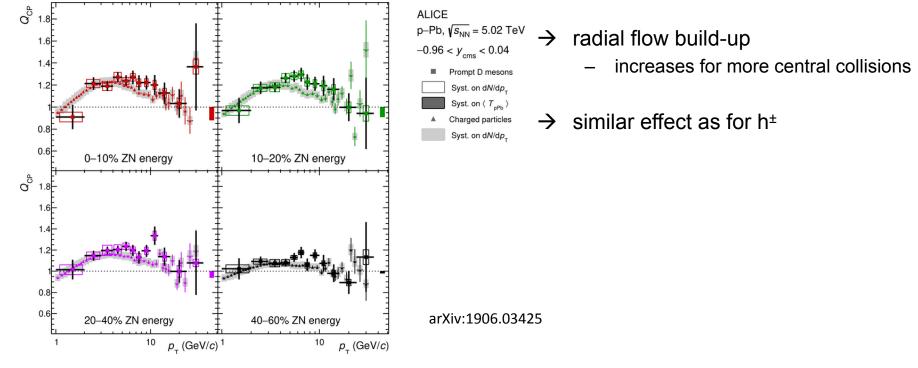
2018 data + Machine Learning (BDT)


 \rightarrow important input for hadronisation models

.

Charm production in p-Pb collisions (i)

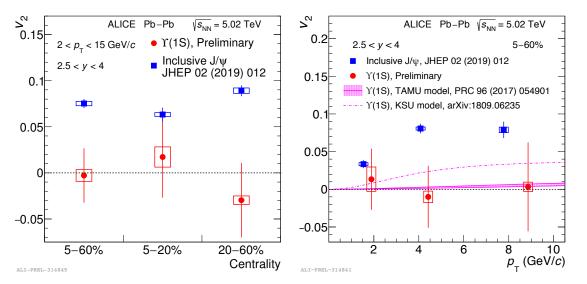
arXiv:1906.03425


models with final-state modification $R_{ m pPb}$ ALICE p–Pb, √*s*_{NN}=5.02 TeV 1.6 Prompt D mesons, $-0.96 < y_{cms} < 0.04$ Average D⁰, D⁺, D⁺⁺ \square D^0 1.2 0.8 0.6 0.4 ---- Duke POWLANG (HTL) 0.2 ---- POWLANG (IQCD) 20 25 30 35 15 *p*₋ (GeV/*c*)

FA | ALICE RRB | 30 October 2019

Charm production in p-Pb collisions (ii)

• central-to-peripheral



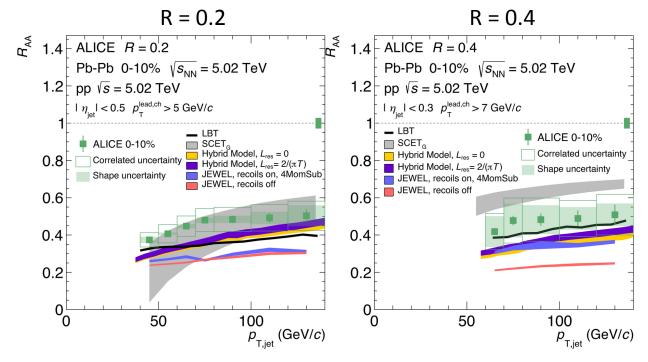
.

Y(1S) azimuthal asymmetry in Pb-Pb

first measurement of bottomonium v₂!

- if our understanding of J/ψ correct
- \rightarrow expect much less v₂ for Y
 - higher dissociation T
 - negligible recombination
- this seems to be what we see...

... the one that doesn't flow?

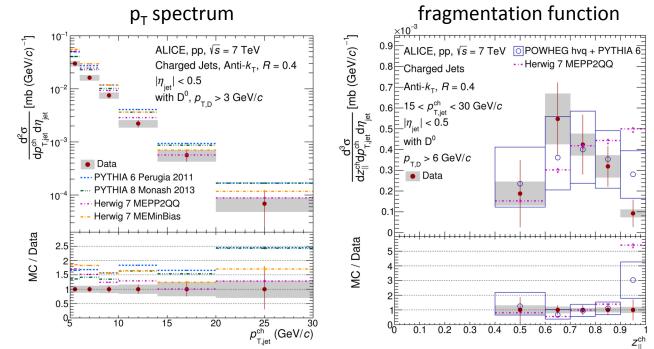


arXiv:1909.09718

A Large Ion Collider Experiment

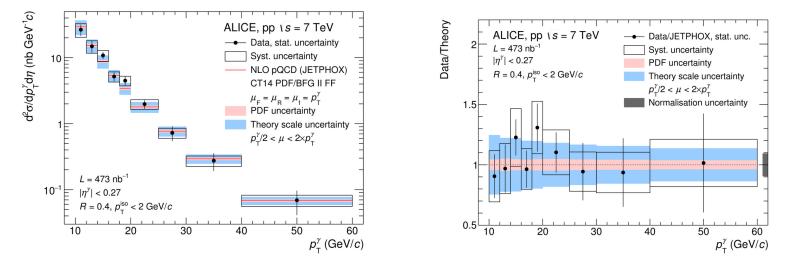
Nuclear modification of jet production

measurement of nuclear modification at different jet radii .



- energy loss
- angular redistribution

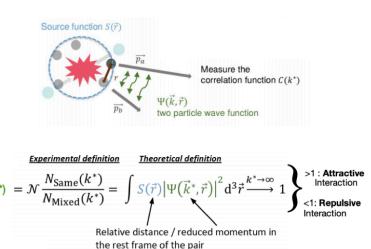
Charm jets in pp

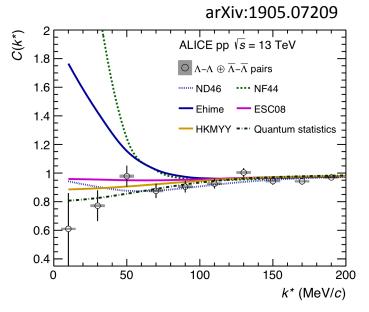


- important reference process
- sensitive to production mechanism (e.g. amount of g splitting to cc) FA | ALICE RRB | 30 October 2019

Isolated direct photon production in pp sqrts=7 TeV

ALICE, arXiv:1906.01371

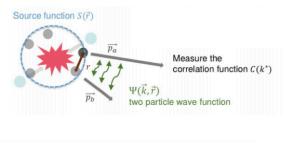



Isolated direct photon production: important reference process in QED/QCD

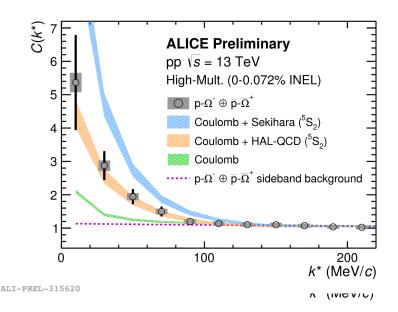
Challenging measurement; results agree with theoretical expectations

Λ-Λ interaction

- two-particle correlation "femtoscopy"
- sensitive tool
 - source size/distribution
 - interaction potential



- compatible with shallow attractive potential
- possibly bound state
 - → $B_{\Lambda\Lambda}$ = 3.2 +1.6/-2.4 (stat) +1.8/-1.0 (sys) MeV



$p-\Omega$ interaction

- two-particle correlation "femtoscopy"
- sensitive tool
 - source size/distribution
 - interaction potential

- very good agreement with HAL-QCD
- important input for nuclear astrophysics

ALICE

Quark Matter 2019

• the most important series in our field

- major operation underway
 - 27 talks
 - 90 posters
 - 57 new analyses under approval
 - 18 papers being submitted

Contents

- Collaboration news
- Computing update
- Physics update
- LS2 upgrades update
- ITS3 upgrade
- Conclusions

ALICE LS2 upgrades

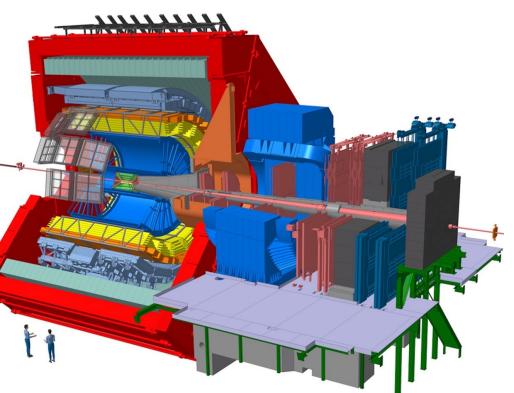
Main physics goals

- study heavy quark interaction in QCD medium
 - \rightarrow heavy flavour dynamics and hadronisation at low p_T
- study charmonium regeneration in QGP
 - \rightarrow charmonium down to zero p_T
- chiral symmetry restoration and QGP radiation
 - ightarrow vector mesons and virtual thermal photons (di-leptons)
- production of nuclei in QGP
 - \rightarrow high-precision measurement

ALICE

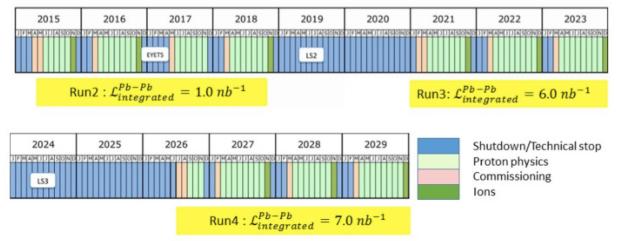
Upgrade of the

ALICE Experiment



ALICE

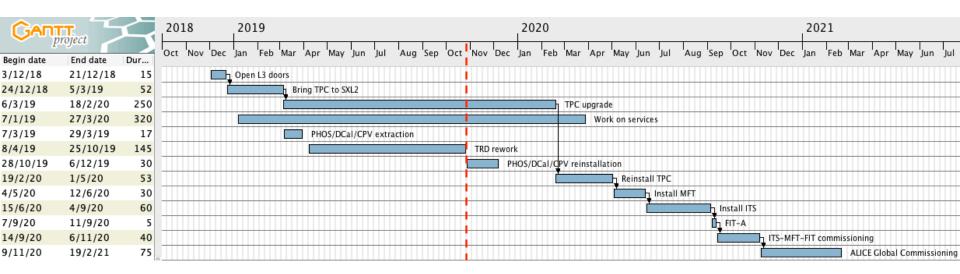
ALICE LS2 upgrades


Layout

- New Inner Tracking System (ITS)
 - MAPS: improved resolution, less material, faster readout
- New Muon Forward Tracker (MFT)
 - vertex tracker at forward rapidity
- New TPC Readout Chambers
 - − 4-GEM detectors \rightarrow continuous r/o
- New forward trigger detectors (FIT)
 - centrality, event plane
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS, new Online-Offline system (O²)
 - record minimum-bias Pb-Pb data at 50 kHz (currently <1 kHz)

ALICE LS2 upgrades

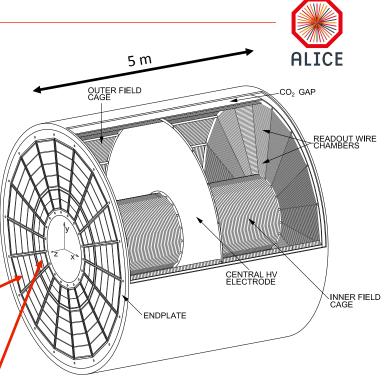
Timeline

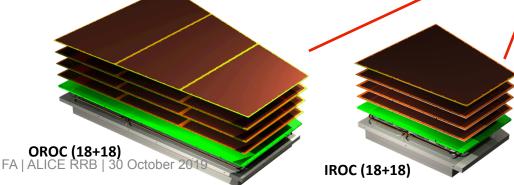

- LS2:
 - LHC injector upgrades, Pb-Pb rate → 50 kHz (now ~10 kHz)
 - ALICE upgrades
- Run 3 + Run 4:
 - experiments request > 10/nb (ALICE: 10/nb + 3/nb at 0.2 T)
 - in line with projections from machine group

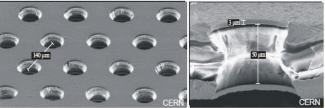
FA | ALICE RRB | 30 October 2019

ALICE

LS2 masterplan




2019: Detector upgrades and Services, 2020: Sequence of detector installation

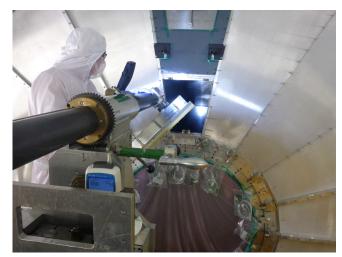

TPC installation:	Feb. 2020
ITS Installation:	Jun. 2020
Global Commissioning start:	Oct. 2020
End of LS2:	22 Feb. 2021

TPC RO chambers upgrade

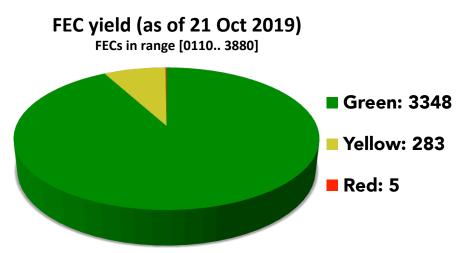
- Goal: replace existing MWPC-based Readout Chambers and Front-End Electronics in LS2 to allow continuous readout of Pb-Pb collisions at 50 kHz in RUN3 and 4
- Technical solution: 4-layer GEM detectors

Electron microscope photograph of a GEM foil

GEM Chambers installation


- MWPC decommissioning and GEM installation done
 - completed on 12 September
- survey, shimming, sealing done
- Service Support Wheel installed
- laser and HV systems ready for pre-commissioning

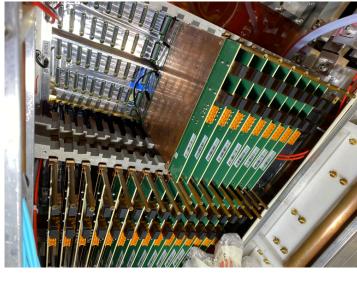
FA | ALICE RRB | 30 October 2019



TPC front-end electronics

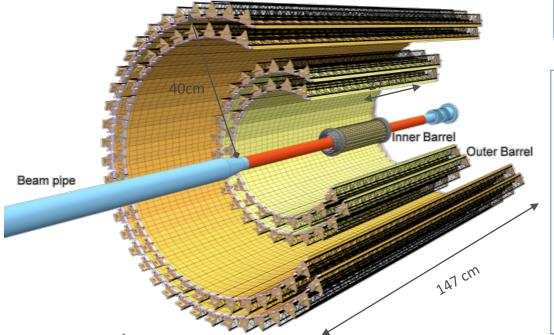
• all FECs received at CERN, prepared for installation

- excellent testing yield: 99.9 % good FECs
 - green + yellow
 - yellow FECs have one non-perfect (fully functional) channel
 - some FECs still to be retested

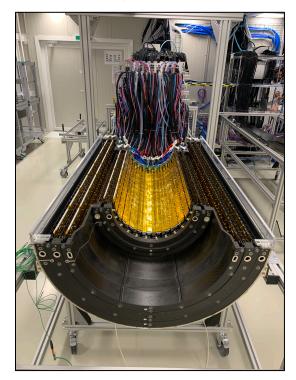

FEC installation

- ongoing according to plan (~ 3 sectors/day)
- completion expected by 15 November

- then pre-commissioning
 - cosmics, laser, pulser, X-ray


32

ITS Upgrade

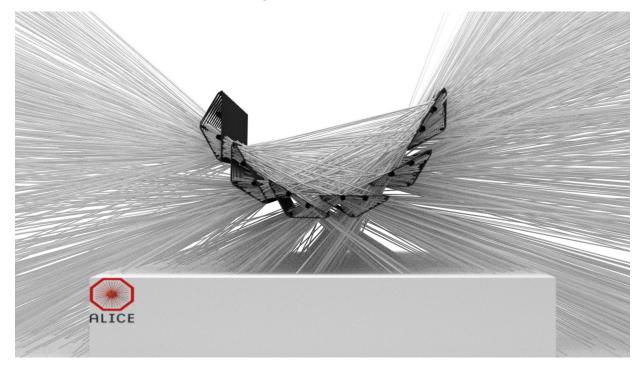


7-layer geometry (23 – 400mm), $|\eta| \le 1.5$) 10 m² active silicon area (12.5 G-pixels) Pixel pitch 28 x 28 μ m² Spatial resolution ~5 μ m Power density < 40mW / cm² Material thickness: ~0.3% X₀/ layer (IB) Max particle rate: 100 MHz / cm²

Half-layer and half-barrel assembly

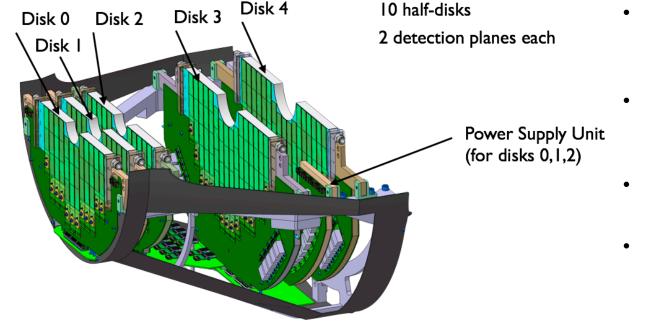
		Inner Barrel			Outer Barrel			
		Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6
1 st Half- Barrel (Top)	Half-layer assembly	Done	Done	Done	Done	Done	Done	Done
	Half-barrel assembly	Done	Done	Done	Done	Done	Done	Done
2 nd Half- Barrel (Bottom)	Half-layer assembly	Done	Done	Done	Done	Done	Done	Done
	Half-barrel assembly	Done	Done	Done	Week 48	Week 46	Done	Done

Integration and commissioning

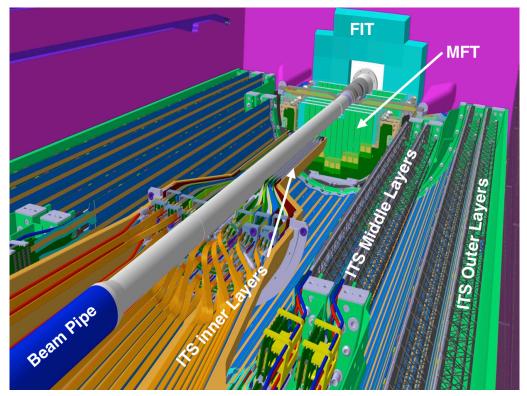

ALICE

• ongoing, 24/7 shifts since May, large effort by all participating institutes

Cosmics!

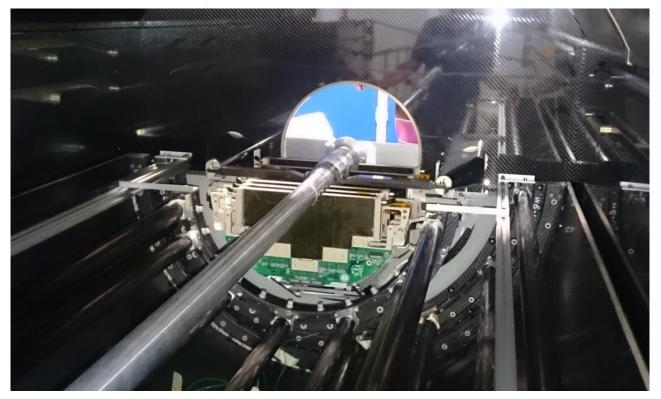

• ~ 10 hours of data taking

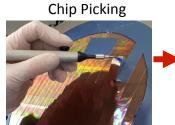
New Muon Forward Tracker



- new Si pixel tracker
 - same technology as ITS
- in front of muon absorber
 2.45 < η < 3.6
- 0.7% X₀ per disk
- 280 ladders
 - 2 to 5 sensors each
- 928 pixel sensors (0.4 m²)

 ~ 5% of ITS surface


MFT: from design...



MFT: from design... to the real object

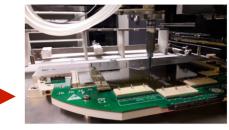
MFT disk production in a nutshell

Chip testing

Flexible Printed Circuits

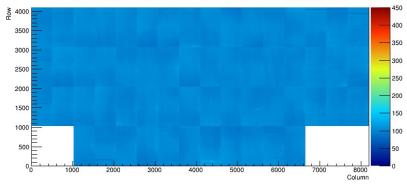
Disk support

Disk PCB



Mechanical disk

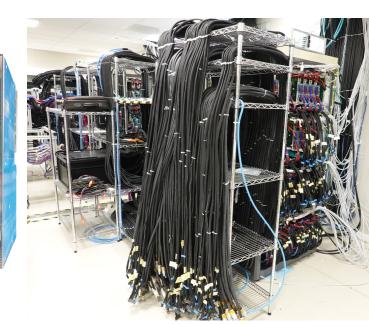
Ladder glueing on the disk



MFT production status

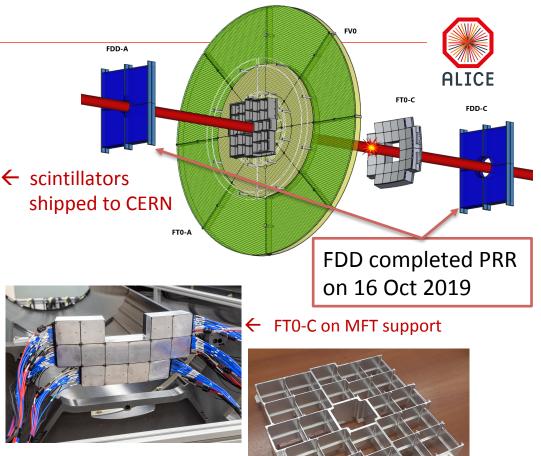
- Ladder production: 76%
 - ~ 10 ladders per week
 - ~ 90% yield
 - to be completed by December
- Disk production: 6 out of 10
 - to be completed by December
- commissioning
 - ongoing at CERN
 - very low noise (< 5 e^{-})
 - good threshold uniformity
 - first integration test with FIT OK

ThresholdMap



ITS/MFT readout electronics

All 288 ITS/MFT read-out units RU2 have been produced and tested at Nikhef Full chain surface tests including front-end, 16 CRUs, 8 FLPs and CTP/LTU


Fast Interaction Trigger

FIT consists of: FT0, FV0 and FDD

← FV0 frame ready

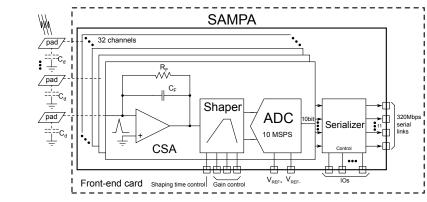
FTO-A frame ready for assembly \rightarrow

FA | ALICE RRB | 30 October 2019

A Large Ion Collider Experiment

E 1

SAMPA – TPC/MCH front-end ASIC

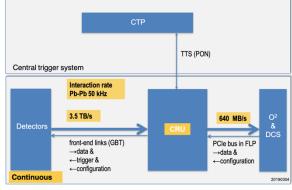

STATI

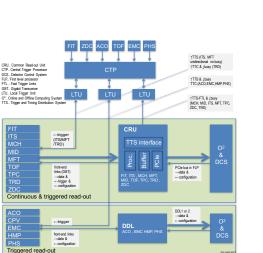
P

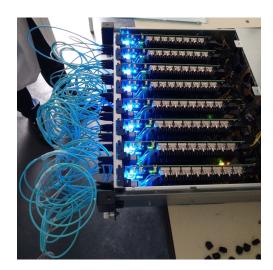
ES

Production of 80000 ASICs finalized

- Fully automatic test system, >75% yield
- Implemented in 3500 TPC front-end cards (all tested)
- Implemented in 19000 MCH front-end cards (pre-series produced and tested)
- Excellent performance
 - Will also be used by STAR, sPhenix, NICA






Common read-out unit (CRU)

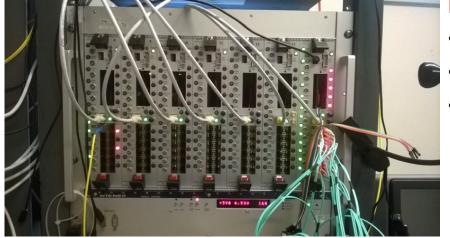
FA | ALICE RRB | 30 October 2019

- 232 CRUs (out of 540) already produced and tested
 - Yield > 99%
- Full system integration of CRU: FE- CRU FLP CTP/LTU
 - ITS, MCH, MFT, MID, TOF, TRD, TPC

TPC CRU procurement

- CRU developed in collaboration between ALICE (CERN, Hungary, India) and LHCb
 - 540 cards needed for ALICE, 700 for LHCb
- the procurement of 390 CRUs for the TPC is part of the Indian contribution to ALICE
 - Addendum 41 to the ALICE MoU, CERN-RRB-2016-002
- original plan: issue production order for the TPC part to an Indian company
 - attempted a few times, but never converged, mostly for administrative reasons
- to ease time pressure on Indian order, which had already been delayed, in agreement with Indian authorities, in March 2018 a partial order for 100 TPC CRUs was put forward to the French company producing the rest of the CRUs
- the last attempt to issue a production order in India for the remaining 290 TPC CRUs failed in July
- in August, we requested the Indian authorities to transfer to an ALICE account at CERN the funds to issue the rest of the order to the French company
- requests to the same end were reiterated by the CERN management

TPC CRU procurement

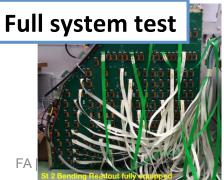

- the latest moment to place the production order to the French company in time not to delay the ALICE commissioning was mid-October
- by the second week of October, not having yet received a commitment to the transfer of funds from the Indian authorities, we asked the CERN management for the authorisation to move ahead with the production order anyway
- we count on the Indian authorities to honour their MoU commitment
 - in case of failure, the ALICE CB would have to seriously consider the position of individual institutions
- as an extreme risk-management measure, we proposed a scheme in which we would cover the purchase of the TPC CRU making partial use of the funds that are being accumulated for the replacement of online computers
 - this would imply that in 2026 we would only be able to replace about 3/4 of the computers

A Large Ion Collider Experiment

Central Trigger Processor (CTP)

Production started

- Batch I (28 units) delivered and in operation
- Batch II (31 units) production Q4/2019
- CTP/LTU HW/FW/SW in full system qualification tests with largest detectors
 - Front-end CRU FLP CTP/LTU
 - ITS, MCH, MFT, MID, TOF, TRD, TPC



Muon chambers (MCH)

FLEX+DualSAMPA

Front-end card – DualSampa (19000 x)

- 1700 cards produced and tested
 - sufficient to equip first installed chambers
 - mass production started 07/19
 - 1st batch of 800 end 10/19, then each week 800 until 03/20

Read-out card – SOLAR (624 x)

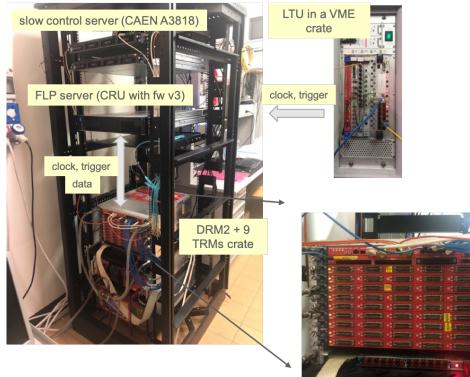
pre-series (25) produced and validated 06/19

mass production launched 06/19,

first 150 received 07-09/19 (sufficient to equip Ch 5)

next batches 150 per month until 12/19

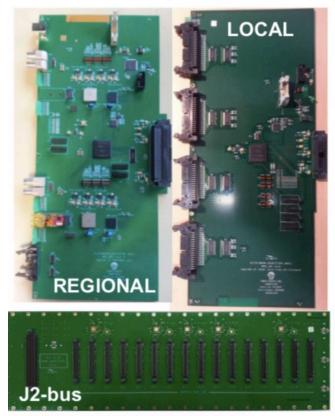
Passive components


Flex hybrid (3270): mass production finalized Large PCB: most types tested, production started

Full system tests ongoing

• Including chambers & read-out chain (1 FLP & 2 CRUs) 49

Time-of-flight detector (TOF)


DRM2 card (72 x)

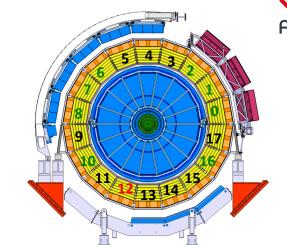
DRM2 + 9 TRMs crate

- All cards produced and tested
- Installation in ALICE started
- Full system read-out setup
 - Including CTP & CRU
 - Full read-out sequence (HB frame) validated with CRU & LTU & O2 SW

ALICE

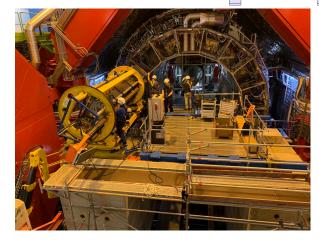
Muon Identifier (MID)

Regional cards (16 x), local cards (234 x)


20 local & 3 regional pre-series card in system test Full crate and stress test validation completed

Local card series production (280) under way Regional cards: pre-production (3) 10/19, remaining 11/19 Cavern installation 04/20

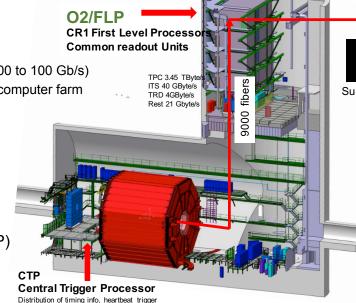
TRD rework

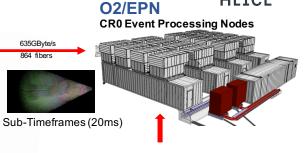

- 9 modules in total (50%)
- HV repair: remove broken HV capacitors
- LV rework: modify LV patch panel

TRD 0, 1, 2, 6, 7, 8, 10, 16 done TRD 12 will be reworked in December (w 49,50)

TRD7 reinstallation last week 52

ALICE

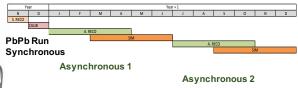

O² System


- focus on rare, soft probes
 - \rightarrow non-triggerable (low S/B)
- \rightarrow continuous readout
 - significant compression needed (500 to 100 Gb/s)
 - online reconstruction in dedicated computer farm

organised in 3 projects:

- First Level Processors (FLP)
 - PL: Pierre Vande Vyvre (CERN)
- Event Processing Nodes (EPN)
 - PL: Volker Lindenstruth (FIAS)
- Physics and Data Processing (PDP)
 - PL: Andreas Morsch (CERN)

reporting to Technical Coordination



635GBvte/s

864 fibers

O2/PDPPhysics and Data Processing

FLP			
	January - July	August-October	October-December
Hardware			
	 Qualification done 3 candidate servers selected Qualification criteria Compatibility with up to 3 CRUs Input bandwidth: 110 Gb/s per PCIe Input+output bandwidth 87 Gb/s Data flow and processing 60 Gb/s Max. data flow with CPU 100% busy Cooling adequate for CRU (airflow 3 m/s min.) 	Procurement of 206 FLPs in progress Delivery in 3 batches: - Batch 1: 16 nodes for acceptance test Acceptance OK on October 9 th - Batch 2: 150 nodes deliveredd to CERI on October 25 th - Batch 3: 40 nodes in November	Installation Final FLPs for detector tests Already installed - TOF: 1 FLP with 2 CRUs N - MCH: 1 FLP with 3 CRUs In progress - CPV - HMPID: FLP with 3 C-RORCs - EMCAL: FLP with 2 CRORCs
<u>Software</u>	✓ FLP Suite 0.1 - 25 July Gitlab software repository	✓ FLP Suite 0.2 - 18 October Release notes, installation	ALICE 02 Project WORK PACKAGES - PRODUCTS
	System provisioning and installation - Server provisioning using Foreman - All roles defined in Ansible - Automatic installation and configuration System logging	and upgrade available online Data flow - Performance improvements - Monitoring improvements	FLP Suite FLP Suite latest news can be found <u>here</u> . 1. Releases
	System monitoring Data flow: - CRU read-out Quality Control (QC) - Custom sampling conditions Control	Quality Control - Simpler data sampling syntax - Workflow merging	Version Date Info FLP Suite v0.2.1 2019-10-23 Release Notes Installation Upgrade FLP Suite v0.2.0 2019-10-18 Release Notes Installation Upgrade FLP Suite v0.1.0 2019-07-25 Release Notes Installation Upgrade Scope and features Installation Installation Installation Installation
	- Readout + QC workflow		The FLP Suite is a set of tools providing the functionality of an O ² Readout chain a end-users. The baseline platform is CERN CentOs 7 (CC7) x86_64. The instructions

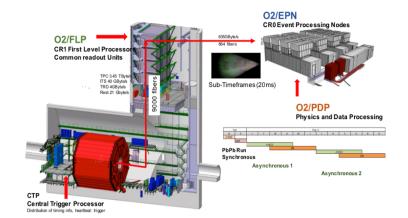
EPN

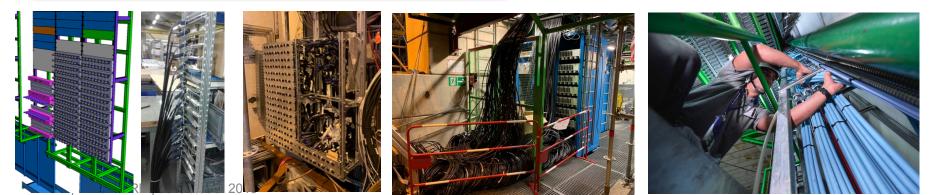
- all four IT-containers delivered and installed
- full load tests performed with static load scenario and fixed internal fan speed
- test in November with dynamic load scenario
 - fans to be steered by updated control system
- first IT load to be installed in November
 - ~ 130 Run 2 servers for testing
- fibres installed
 - connectivity to Meyrin, CR1
- first part of Infiniband network delivered
 - to be installed, tested first half of November

PDP (i)

ALICE

- reconstruction
 - successful Barrel Tracking EDR in June 2019
 - Out-of-barrel Tracking EDR in December
 - tests on AMD GPUs ongoing
- simulation
 - successful GRID tests including parallel simulation on multiple cores and HPC
 - prototyping use of opportunistic High-Performance Computing resources
 - Monte Carlo-to-Monte Carlo embedding successfully tested in Run2 productions
 - Geant4: optimisation of physics lists and physics validation finalized
 - working on computing time optimisation (example VecGeom integration)

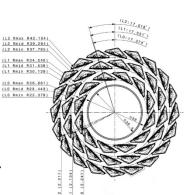

PDP (ii)

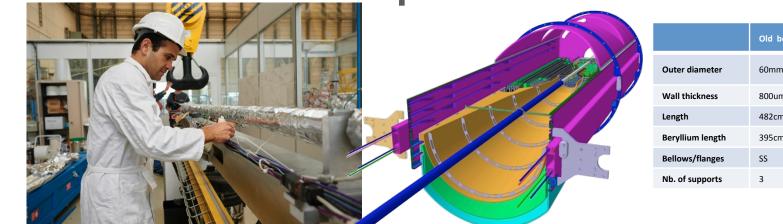


- analysis
 - new Framework based on DPL, Apache Arrow and RDataFrame under development
 - first tests with Run2 data converted to Run3 format running
- infrastructure
 - Calibration and Constants Database in production for commissioning
 - Data Storage
 - 10% validation test already during 2018 Pb-Pb run
 - standardised on IT hardware. Joint purchase in 2020

Services: cables, fibres

- 3107 copper cables (70km), 50% installed
- Completion dates:
 - Cable pulling cavern: finished
 - Connectors in the cavern: finished by December 2019
 - Cables and connectors on Miniframe: finished by March 2020
- 221 fibre trunk cables, 45% installed and tested
- ITS and TPC trunk cables in miniframe installed in October
- TPC C-side installation in completion by March 2020



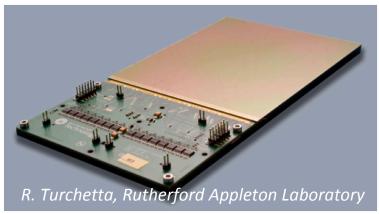


New beam pipe

- approved by LMC in September 2014
- central beampipe section: OD: 38 mm, ID: 36.4 mm, 0.8mm wall
- chamber received at CERN mid-April 2019
- chamber straightness and concentricity within the specification
- final NEG acceptance and permanent bakeout installation in November
- installation in LS2 in March 2020

Contents

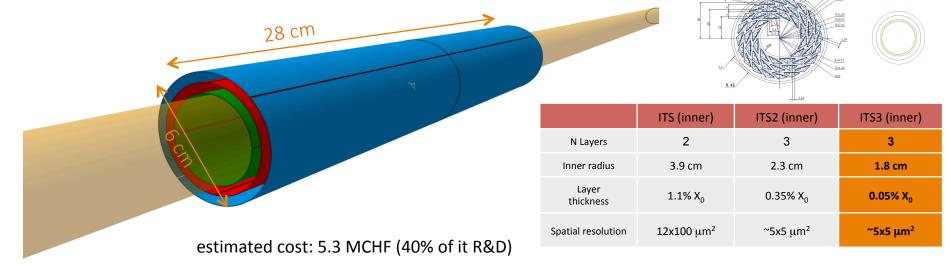
- Collaboration news
- Computing update
- Physics update
- LS2 upgrades update
- ITS3 upgrade
- Conclusions



.

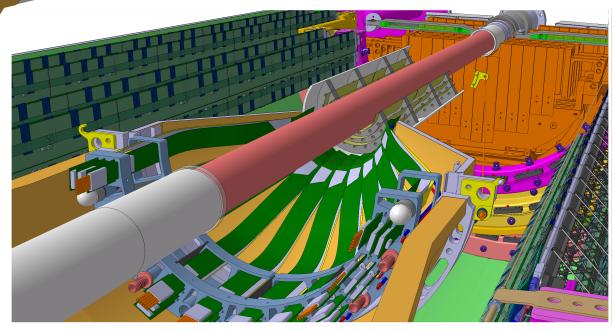
A new ultra-light inner barrel in LS3

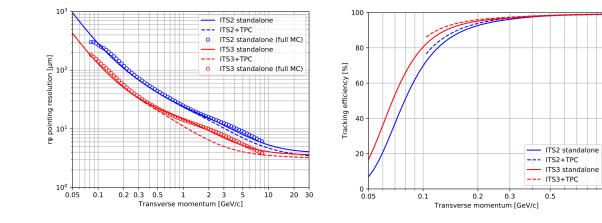
- driving requirements of ITS2 upgrade
 - reduce material budget
 - move closer to beam-line
 - can be pushed further using technologies that are quickly becoming mature
 - − thinning to ~30 μ m → cylindrical sensors
 - − silicon stitching \rightarrow sensors of ~ 10x10 cm²
 - Letter of Intent for the "ITS3" inner barrel: <u>ALICE-PUBLIC-2018-013</u>


Crucial for thermal dileptons and low- p_T HF

ITS3: concept

- 3 truly cylindrical layers made of \sim 7x14 cm² sensors thinned to 20-40 μ m
- Readout circuitry (power consumption) at periphery, outside acceptance
- No water cooling, minimal support structure in acceptance
- Total material at R < 4 cm: $\sim 1.3\% \rightarrow \sim 0.3\%$




ITS3 integration

Replaces the ITS2 Inner Barrel

Remaining ITS2 (Outer Barrel) stays in place

ITS3: impact on ALICE Upgrade measurements

low-mass dielectrons:

 x/X_0 at R < 4 cm:

 $\sim 1.3\% \rightarrow \sim 0.3\%$

- 1. less conversions (x 1/3), one of the main "soft" backgrounds
- 2. better low- p_T standalone efficiency to reconstruct and reject conversions
- 3. better precision to reject or subtract conversion and charm-decay electrons (displaced)

• Heavy flavour, in particular hadrons with small $c\tau$ ($\Lambda_c \sim 60 \ \mu m$, $D_s \sim 150 \ \mu m$)

- 1. better precision to separate secondary vertex
- 2. increased efficiency \rightarrow significant improvement in multi-prong decays

AI TCF

Excerpt from LHCC minutes

LARGE HADRON COLLIDER COMMITTEE

Minutes of the one-hundredth-and-thirty-ninth meeting held on

Wednesday and Thursday, 11-12 September 2019

• The LHCC is impressed by the new concept for the ITS3 with significantly reduced material budget, recognises the physics case presented in the LoI and in the dedicated ITS3 session and appreciates the on-going simulations on various physics channels to further demonstrate the expected gain from better resolution and efficiency at low transverse momentum. The LHCC endorses the plan of ALICE to carry out the necessary R&D studies to demonstrate the technical feasibility of this upgrade project. A TDR to be submitted on a timescale compatible with installation in LS3 will have to include in addition a comprehensive study of its physics gains with respect to the ITS2 detector.

Contents

- Collaboration news
- Computing update
- Physics update
- LS2 upgrades update
- ITS3 upgrade
- Conclusions

Conclusions

- rich physics output continues
 - charm interaction, hadronisation, initial effects
 - reference processes in pp
 - large release of results from 2018 sample coming up
- upgrade activity proceeding on schedule
 - problems with TPC CRU funding, but procurement ongoing
- ITS3 upgrade preparations have starter
- we are grateful for the funding agencies for their continued support!

