Pion showers in the CALICE Si-W ECAL

David Ward

- Outline CALICE detector + test beam
- ❖ Briefly mention e⁻ tests
- Mainly discuss measurements of hadronic showers

CALICE test beams

- CALICE highly granular calorimeters; motivated by particle flow approach to jet reconstruction
- Main beam tests, using π , μ , e beams:
- **2006-7**
 - SiW ECAL + AHCAL + TCMT @ CERN
- **2007**
 - Small DHCAL test @ Fermilab
- 2008
 - SiW ECAL + AHCAL + TCMT @ Fermilab
- 2009
 - Scint-W ECAL + AHCAL + TCMT @ Fermilab
 - Standalone RPC and Micromegas tests @ CERN

SiW ECAL

SiW ECAL electron results

Linearity of response is good to $\sim 1\%$ (though small offset from zero in test beam setup; largely simulated)

Energy resolution: 16.5%/√E⊕1.1% Well modelled by Monte Carlo

NIM A608 (2009) 372

30.69 / 32

 16.53 ± 0.14

 1.07 ± 0.07

Shower profiles for e

Pion beam data and MC simulations

Reconstructed data

- 2007 data from CERN
- 8 energies used

```
Run330641 – 8GeV \pi^{-}
```

Run330332 – 10GeV π^{-}

Run330645 – 12GeV π^{-}

Run330328 – 15GeV π^{-}

Run330326 – 20GeV π^{-}

Run331298 – 30GeV π^+

Run331286 – 50GeV π^+

Run331324 – 80GeV π^+

- Calibrated using muons → energies in MIPs
- Cuts to remove muons, electrons, protons.

GEANT4 simulations

GEANT 4.9.3 with physics lists...

QGSP_BERT

QGSP_BERT_TRV

QGSP_FTFP_BERT

QGS BIC

QGSP_BIC

FTFP BERT

FTF_BIC

LHEP

Fraction of non-interacting pions

- •Roughly half of pions start to shower in the ECAL ($\sim 1\lambda_{int}$)
- "Non-interacting": < 100 MIPs deposited in the ECAL
- •Quite well modelled (~1-2%) by most physics lists serves as a check of cross-sections on (mainly) tungsten.

Total ECAL energy

Mean energy in ECAL

Plot ratio of Monte Carlo / Data vs pion energy for all eight physics lists

All except LHEP lie within 10% of data Several models are good at ~ 8 GeV FTF_BIC probably closest to data overall

Transverse shower profile

Radius of hit computed w.r.t. the shower centroid in (x,y)
Plot the energy-weighted radial distribution
Data (points) c.f. QGSP_BERT.

Mean shower radius; 95% containment

Most models lie below data (showers too narrow by ~10%). FTFP_BERT, FTF_BIC best

Identify shower starting point

Simple algorithm – excluding isolated hits, find the first ECAL layer with >10 MIPs, so long as two out of the following three also >10 MIPs Usually correct to within ± 1 layer

Longitudinal Shower Profile

- Want to deconvolve the distribution of paticle interaction points from the (more interesting) intrinsic shower shape.
- Use the interaction point as calculated above, and measure MIPs/layer thereafter.
- In MC can use truth info to separate contributions from different species.
- e[±] peak after ~10-15 layers, as expected
- "mesons" show long profile
- Protons show a short-range component (nuclear fragments) as well as longer

This model, at this energy, seems to overestimate the nuclear fragments

12 GeV compared with eight physics lists

Significant differences between models; most obviously in regard to the proton contribution No model is perfect.

Two physics lists @ four typical energies

Try to summarise the situation by examining three ranges of depth dominated by different shower components...

Energy in layers 1-3

Ratio Monte Carlo / Data Region dominated by nuclear fragments

FTFP_BERT and FTF_BIC systematically overestimate the data So do the BERTINI-based physics lists at 8 GeV Other models lie below data Discrepancies at the ~20% level

Layers 5-20

Ratio Monte Carlo / Data Region dominated by electromagnetic component

LHEP systematically low FTFP_BERT and FTF_BIC seem to be closest to data above 20 GeV

Layers 30-50

Ratio Monte Carlo / Data
Tail region - dominated by long-range hadrons

Most physics lists are within 10%

Other physics lists studied

- FTFP_BERT_TRV
 - Not significantly different from FTFP_BERT in our data.
- QGSP_BERT_HP
 - The high precision neutron tracking does not have a significant effect on the response of our ECAL.
- CHIPS-based models
 - These seem interesting.
 - Studied QGSC_BERT, QGSC_CHIPS and QGSC_QGSC in GEANT4.9.3.b01 β-release. QGSC_CHIPS was very promising, and probably gave the best overall description of our data.
 - Studied the same three lists, and CHIPS alone, in the released GEANT4.9.3. Performance was very poor – too much energy into low energy protons. We believe this is understood, and we will be interested to evaluate updated versions.

Summary

- CALICE Si-W ECAL is clearly too small to contain hadronic showers.
- But its high granularity, and small X_0/\lambda_{int} allow us to make some detailed observations of the shower substructure just after the primary interaction. Also provides information about interactions in Tungsten.
- Looked at the energy deposited in the ECAL, the transverse and longitudinal shower profiles.
- Longitudinal profile of the shower w.r.t. the initial interaction seems particularly useful.
- Most of the physics lists studied give a reasonable description of the data, to the 10-20% level.
- Since the changes to the FTF model in GEANT4.9.3, the physics lists FTFP_BERT and FTF_BIC seem slightly favoured, especially in terms of the transverse shower width, and also the longitudinal profile.

Backup

QGSC_CHIPS from GEANT4.3.b01

CHIPS models in GEANT4.9.3

CHIPS models in GEANT4.9.3

