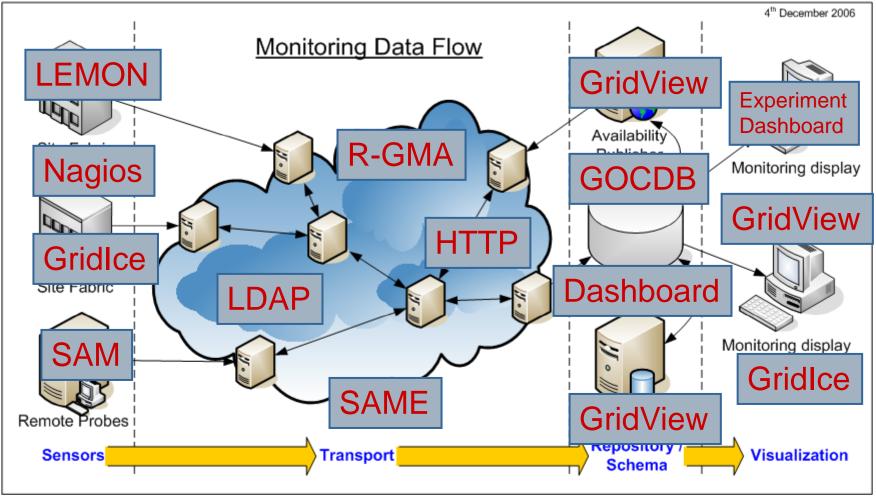
Architectural Models for WLCG Monitoring

James Casey, CERN GDB 5th December, 2007

- □ WLCG Monitoring Working Groups has now been going for 1 year
- Initial aims achieved
 - Ability to pass back information into sites on their availability
 - Addition of better site local monitoring

- Now need to look at next phase of work
 - Not as a working group
 - Just part of normal operations



Who is involved?

- Four main stakeholders
 - Site Administrators
 - Grid Operators
 - ☐ "CIC on Duty"
 - □ Regional Operation Centre (ROC)
 - WLCG Project Management
 - Virtual Organisations
 - WLCG Experiments
- 5th 'Stakeholder'
 - Monitoring developers + operators

High-level Model

See https://twiki.cern.ch/twiki/pub/LCG/GridServiceMonitoringInfo/0702-WLCG_Monitoring_for_Managers.pdf for details

Architectural Principles

Why Architectural Principles?

- Many different architectures could solve our problems
 - We've deployed many already!
- Need to keep consistency when making choices
 - Use the principles to guide concrete choices
- Approach already was used to design the site-local monitoring prototype
 - This is an attempt to extend them more globally

Improve reliability by reducing time to respond

- "Site administrators are closest to the problems, and need to know about them first"
- Our focus has been on site monitoring
 - not been deployed widely by sites
- Implications
 - Improved understanding of how to monitor services
 - ✓ "Service Cards" being developed by EGEE SA3
 - Need to deploy components to sites
 - Sometimes an entire monitoring system
 - Needs active participation of site admins

Tell others what you know

- "If you're monitoring a site remotely, it's only polite to give the data to the site" Chris Brew.
 - Remote systems should feed back information to sites
- Implications
 - Common publication mechanisms
 - Integration into fabric monitoring
 - Discovery of data?
 - Site trust of data Is it a "backdoor" communications mechanism?

Authority for data...

- Currently repositories have direct DB connections to (all) other repositories
 - E.g. SAM, Gridview, Gstat, GOCDB, CIC
- And they cache and merge and process the data
- Implications
 - We have a "Interlinked distributed schema"
 - And tools should take responsibility for contents of parts of it

No monolithic systems

- Different systems should specialize in their areas of expertise
 - And not have to also invent all the common infrastructure

- Implications
 - Less overlap and duplication of work
 - Someone needs to manage some common infrastructure
 - We need to agree on the common infrastructure

Don't have central bottlenecks

- "Local problems detected locally shouldn't require remote services to work out what the problem is"
 - Still a role for central detection of problem
 - Just they're reported locally too
- Lots of central processing done now in SAM/Gridview
- Implications
 - ✓ Do as much processing locally (or regionally)
 - ✓ Helps scaling improves robustness
 - ✓ enables automation reduces manpower
 - Harder to deploy

Visualization for each community

- "user-targeted" visualization
 - But all should use the same underlying data
 - Extract information processing out of visualization tools
 - Provide same processed info to all visualizations
 - Interface with community specific information, e.g. names
- Implications
 - Many "similar" dashboards
 - Everyone sees the same data
 - ? Common frameworks/widgets needed here ?

Locality issues

- Our operations model is changing
 - From central to regional/national/local
- Architecture should reflect this
 - Distribution will help scaling
- Still need to pass information upstream
 - For reporting, central debugging, ...
- Implications
 - Guidelines needed to help developers to decide what to pass back
 - Possibility of more info going across the site boundary than the site admin wants

Tasks

Things to do... independent of architecture

- Messaging System
 - messaging seen as vital component for reliability, robustness and scaling
- Operations Dashboard
 - "New" SAM Portal
- Deploy the site monitoring
 - Make it easier for sites (provide yaim, ...)
- Reporting
 - Automate our management reporting

- □ Have some principles to guide us
- Should come back in January with concrete workplans for tasks
- Remember that the goal is to improve reliability of the monitored system
 - And every decision should reflect that

Questions?

Other Principles (Secondary)

Make it less brittle

- □ Remove SPOFs
 - Push reliability into the fabric
 - Less point-to-point connections over the WAN
- Asynchronous communication works for monitoring
 - Latency is ok (to a point)
- Implications
 - Reliable transport fabric using messaging systems
 - Less central (unique) repositories improves availability

Re-use, don't re-invent

- What do we do?
 - Collect some information, Move it around
 - Store it, View it, Report on it
- ☐ This is pretty common ☺
 - We should look at existing systems
- □ Already happening for site fabric...
 - Nagios, LEMON, ...
- Implication
 - ✓ Less code to develop and maintain
 - Integration nightmare?

Don't impose systems on sites

- We can't dictate a monitoring system
 - Many (big?) sites already have a deployed system
 - We have to be pluggable into them

- Implications
 - Modular approach
 - Specifications to define interfaces between existing systems and new components

Common names

- Infrastructures has identifiers for things
 - GOCDB name is really an ID, not a nameused as a primary key for linkage
- Implication
 - ? (GOCDB?) ID used for mapping between names
 - A community should only see their name
 - And never the ID

Responsibility for data

- Certain system clean up data
 - FTM for log files
 - Gstat for BDII
- And should re-publish the "validated" version
 - Everyone shouldn't do the processing (differently)
 - ☐ E.g. gridmap/SAM/gstat for CPU counts
- Implications
 - ✓ Tools are simpler if they use cleaned up data
 - At the cost of latency

Flexible topology

- Communities also have structure
 - Distributed tier-2s, split between CAF and production, disk and tape, ...
- We need to be able to map sites, services and metrics into the community structure
- Implications
 - ✓ Common ontology/schemas
 - Flexible and distributed
 - Integrate many data sources

Necessary (and complete) security

- Security has an overhead
 - Don't kill your system for "needless" security e.g. R-GMA
- Encryption of specific elements
 - E.g User DN
- Signing for provenance
- Implication
 - Security is available when needed depending on application use-case
 - It's not used when not needed

A (technical) architecture?

- Scalable underlying fabric
 - Messaging Systems, HTTP REST

ActiveMQ

■ Use (simple) standards

HTTP, SSL

- Web technology
- Publish metadata

RDF

- Common grid topology information
- □ Republish "raw" bulk data

"standard" XML (?)

- metrics, usage records, ...
- Visualization "toolkits"

Dashboard, Yahoo UI, ...

□ Reporting JasperReports