
Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

1

 Robust and Resilient Services –

How to design, build and operate them

Jamie Shiers
1
, Gavin McCance

1
, Patricia Mendez Lorenzo

1

1
CERN, Geneva, Switzerland

{Jamie.Shiers,Gavin.McCance,Patricia.Mendez.Lorenzo}@cern.ch

Abstract

Grid infrastructures require a high degree of fault tolerance and reliability. This can only be

achieved by careful planning and detailed implementation. We describe on-going work within

the WLCG project to build and run highly reliable services. Following the "a priori" analysis

based on the services and service levels listed in the Memorandum of Understanding that sites

participating in WLCG have signed[1], this paper provides an "a posteriori" analysis

following over 2 years of production service. This work covers not only the services deployed

at the Tier0 centre at CERN - which has the most stringent service requirements related to the

acquisition of the raw data, the initial processing phase and the distribution of raw and

processed data to Tier1 sites, but also a similar analysis for Tier1 and major Tier2 sites. The

latter will be covered at a workshop that will take place shortly before the EELA conference

and so will be very up-to-date.

1. Introduction

The target service levels that must be reached by sites that are members of the Worldwide

LHC Computing Grid (WLCG) [2] – and hence signatories of the WLCG Memorandum of

Understanding (MoU) [3] – range from 99% for key Tier0 services to 95% for some services

at Tier2s. However, these targets are not for individual services, but for higher level

functionality, such as “acceptance of raw data from the Tier0 centre during accelerator

operation”. Furthermore, the experiments – in particular CMS – have established lists of so-

called “critical services”, the consequences to the experiment in case of downtime or service

degradation, and the maximum acceptable delay for problem resolution. Based on these

requirements, as well as several years‟ experience of running production Grid services, a

simple “tool-kit” for deploying highly available services has been established. This is coupled

to a “checklist” for new services, as well as recommendations for middleware and database

developers, together with operational techniques and procedures. All of these issues will be

discussed during a WLCG Service Reliability workshop (to be) held at CERN during the

week of November 26 – 30 2007. Whilst up-to-date information will be presented during the

EELA 3 conference, the deadlines for paper submission are such that the information given

Proceedings of the Third Conference of the EELA Project
R. Gavela, B. Marechal, R. Barbera et al. (Eds.)

CIEMAT 2007

© 2007 The authors. All rights reserved

http://indico.cern.ch/conferenceDisplay.py?confId=20080

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

2

below is based on the preparatory work for the workshop and not the final outcome. However,

no significant changes in terms of the basic recommendations are expected – the main

deliverable is to develop a concrete timeline for deploying these techniques across the key

sites (as dictated by the experiments‟ requirements) and to understand how the delivered

service level can be effectively monitored.

2. Service Intervention Analysis

An analysis of the service interventions that have occurred over the last two years indicates

that the dominant interventions are still unscheduled. In particular, a significant number of

service interruptions are due to power and cooling problems and network interruptions. These

give a “background” against which other types of interruption or degradation need to be

measured – there is no point in investing heavily to protect against rare cases when a major

cause of downtime remains unresolved. Examples of service problems and the frequency that

may be expected are given below:

• Network cut between pit & B513: based on experience, ~1 per decade, fixed in ~4 hours

(the network cable is largely redundant)

• Oracle cluster-ware “crash”: ~1 per year (per RAC?) – recovery in < 1 hour

• Logical data corruption – database level: ~1 per decade, painful recovery (consistency

checks can help here, but scripts run directly against the DB have been shown to cause

much higher levels of corruption

• Data corruption – file level: being addressed – otherwise a certainty!

• Power & cooling: will we get to (<) ~1 per site per year? Soon?

• Critical service interruption: 1 per year per VO? Most likely higher in 2008

3. The whole is greater than the sum of the parts

The (W)LCG Technical Design Report (TDR) [4] lists two motivations for adopting a Grid

solution. These are as follows:

1. Significant costs of [providing] maintaining and upgrading the necessary resources …

more easily handled in a distributed environment, where individual institutes and …

organisations can fund local resources … whilst contributing to the global goal

2. … no single points of failure. Multiple copies of the data, automatic reassigning of tasks

to resources… facilitates access to data for all scientists independent of location. …

round the clock monitoring and support.

For funding reasons, the first argument is clearly extremely important – for the reason stated

in addition to the fact that many of the institutes involved are multi-disciplinary. Thus, not

only for resource sharing within a site but also to bolster the scientific and intellectual

environment in the collaborating countries, such a scenario is much healthier than one where

all resources are concentrated at the host laboratory (and acquired locally).

The second argument needs further analysis and is indeed similar to the 3
rd

 criterion in Ian

Foster‟s Grid computing checklist [5]:

“… to deliver nontrivial qualities of service. (A Grid allows its constituent resources to be

used in a coordinated fashion to deliver various qualities of service, relating for example to

response time, throughput, availability, and security, and/or co-allocation of multiple resource

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

3

types to meet complex user demands, so that the utility of the combined system is

significantly greater than that of the sum of its parts.)”

With the exception of services and processing that is performed at the Tier0 site, the fact that

much of the data is replicated at several or many sites, the partial or even total failure of a site

should not stop the associated production or analysis. Similarly, some of the services – such

as the reliable File Transfer Service (FTS) – are already designed to cater for service

interruptions at source and/or sink site: if the storage element (SE) at a given site is about to

enter scheduled maintenance, the corresponding FTS channels that source or sink data in that

SE can be paused. This still allows new transfer requests to be queued, but they will not be

attempted until the channel is re-opened, avoiding wasting bandwidth on transfers that are

bound to fail and potentially reducing the background load on support staff (analysing “fake”

failures.)

4. Building Robust Services

Robust services can only be delivered through careful planning complemented by a

combination of techniques, including the appropriate steps at application design and

implementation level, as well as at the deployment and operational stage. We describe below

very simple techniques that have proven extremely effective and widely applicable in

designing and delivering reliable services with a reasonable level of effort and – importantly –

largely avoiding fire-fighting and panic.

Two mindsets that are particularly important in this respect are:

 Think service – a service is far more than a middleware release in a „production‟

repository;

 Think Grid – a Grid is the ultimate distributed computing system (so far). A change to a

service deployed at a given site or site(s) may well have an impact far wider than the

local community and must be planned and announced accordingly.

Before we list the techniques that are in daily use for deploying and operating the WLCG

service, we consider some of the issues related to failures and support calls, together with

their associated costs.

Consider, for example, the reliable file transfer service. Given the expected data volumes and

rates, a typical LHC experiment will transfer globally of the order of 10
5
 1GB files per day –

many more if analysis data and calibration datasets are also included. The percentage of such

transfers that fail in such a way that human intervention is required must be extremely low,

particularly as the problems seen after automatic retries are often complex and time

consuming to resolve. Other examples come from user support costs. A ticket that a ticket

processing manager spends 1 hour on (and may take much more to solve) has a real and non-

negligible cost associated with it. Not all such problems can be avoided purely through good

documentation and robust services, but there is clearly very strong motivation to do so.

Finally, any operational issues that require human follow up must be reduced to the absolute

minimum – anything that can be documented in English (or indeed any other language) can

also be programmed as a script or in a higher level language – computers are simply much

better and cheaper at doing repetitive tasks rapidly than humans, whose particular analytical

skills are best used elsewhere.

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

4

5. Check-list for New Services

Before a new service is deployed – be it in a Grid or non-Grid environment – a

straightforward checklist has been established that has proven invaluable in ensuring that the

resultant services are of the required quality. Ideally, this work starts well prior to deployment

– the middleware must be designed and written with reliability in mind. This includes details

such as error messages and logging – this must be consistent and in an agreed place to which

the necessary support teams have access if required (the latter is non-trivial in the case of

cross-site services). The application must be designed to cope with “glitches” – e.g. short-

lived problems with services on which they depend and which are simply unavoidable in a

distributed environment. Where possible, the ability to share the load across multiple load

balanced servers offers numerous advantages, including transparency to many common

service interventions and even middleware upgrades. In the case of a database backend, the

ability to re-establish a connection and – assuming a database cluster – failover transparently

from one node to another are mandatory features. The appropriate hardware must obviously

be allocated – avoiding (except in cases such as batch worker nodes) single points of failure

through power supplies or feeds, network connections and so forth. Finally, a minimum set of

operational procedures – including contact names and addresses – together with a basic set of

tests (no contact, high load etc.) is needed. The necessary workflows also needed to be

established in the support lines, together with diagnostic tests and procedures for the various

levels of support / operations teams. Starting with these essentials, the service manager can

readily add more tests and procedures as experience shows are required.

6. Daily and Weekly Operations Meetings

One of the key secrets to running smooth services is a regular operations meeting. This has

been in place at CERN since decades before the Grid and used to be performed by vendors

(CERN having a number of large mainframes / clusters at that time). In recent years, these

meetings have been extended to cover the Grid world, with a clear impact on the state of the

Grid services. On occasion, people have expressed „disappointment‟ that there is not an

atmosphere of mad panic / firefighting at these meetings – but this is precisely the point –

these meetings are to ensure a smooth service, exactly the opposite of firefighting. Instead of

being an overhead, these meetings act as an excellent point of information exchange, and in

fact significantly reduce the amount of time spent on identifying and debugging problems.

The meetings typically take around 10 minutes – slightly longer on Mondays – and quickly

run through alarms and problems seen since the last meeting. If not immediately solved, the

problems are assigned to a system administrator or technical expert as appropriate. More

importantly, they allow weaknesses in the services – such as lack of adequate monitoring or

alarms – to be exposed and peer pressure proves a very effective mechanism for ensuring that

these holes are rapidly plugged. Once a week, any outstanding tickets against the CERN

Regional Operations Centre are reviewed, again ensuring that problems are not left

unaddressed for prolonged periods. Another important topic that is reviewed daily is any

interventions scheduled for that day, or any foreseen in the coming days. It cannot be stressed

too highly how important adequate preparation for interventions has repeatedly been proved

to be – it is not just a question of informing fellow service providers and users, but also

ensuring that the intervention proceeds smoothly. All too often, a well debugged procedure

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

5

runs into problems (often because it is not strictly followed, or as the availability of needed

colleagues for a given step has not been checked), turning a smooth or even “transparent”

intervention into a prolonged downtime that may even need a further intervention to

adequately complete. In the worst cases, unannounced “transparent” interventions have

resulted in severe service degradation that have led to extreme user dissatisfaction and have

been extremely costly in terms of manpower to resolve. We have therefore agreed simple

procedures for announcing scheduled interventions of various lengths, as well as unscheduled

interventions. Equally importantly, an announcement through the agreed channels is required

when the service is fully restored (or periodic announcements in case of prolonged problems),

as well as an open post-mortem, recording any unforeseen problems, their resolutions and

lessons for the future. These daily – primarily site-oriented (see caveat above) meetings are

complemented by weekly joint operations meetings with all the main sites that have a similar

agenda but also include VO-specific issues. Finally, less frequent meetings are held to ensure

that the operations tools adequately address the needs of the community. These meetings are

typically held bi-annually.

7. Key Techniques

The main techniques that are used in conjunction with the standard operations procedures are

both simple and well-understood:

 Understanding the impact of downtime or degradation to service. In some cases, it may

even be acceptable for a problem only to be resolved the next working day whereas in

others this would clearly be unacceptable: resources being limited, the effort (and

money) needs to be focused in the right places;

 The use of database clusters for middleware components that have persistent state

(together with the appropriate deployment and application development strategies);

 Load-balanced servers for the middle tier.

These techniques not only allow services to be resilient to single (or even multiple)

component failure, but permit many of the common interventions to be performed with zero

user-visible downtime. These include operating system, database or middleware upgrade or

security patches as well as the addition of new hardware / replacement of old or failure nodes.

In the case of the best behaving applications, these techniques have been fully supported for a

number of years. Further work is required to make all of the main WLCG services sufficiently

resilient – this is currently underway, being driven by the priorities of the experiments.

8. Middleware and Database Development Techniques

CVS: „ça va saigner‟

Subversion: Destroying someone's (or some group's) honesty or loyalty; undermining moral

integrity

The key point about designing middleware for robustness and resilience is to incorporate

these aspects into the initial design. This is because many of the deployment and operational

features already discussed have an impact on the basic architecture and design of the

software; it is typically much more expensive to retrofit high-availability features onto a

software product after the design and implementation (although it is possible). In general, the

service scaling and high-availability needs typically mandate a more decoupled architecture.

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

6

Decoupling the different sub-components of a single service from each other is extremely

desirable – quite apart from the long-term maintainability of the code, debugging the running

service in production is much easier if the architecture is cleanly defined and the

responsibilities of the components are clear. It is also advantageous from the point of view of

basic operations of the service. For example, the FTS allows the agent daemons (that actually

do the real work of processing the file transfers) to be taken down for intervention, moved or

redistributed while maintaining the front-end of the service up and running, so that the users

can continue to interact with the system. The individual channels in the service may be taken

down separately for intervention without affecting the other channels in the service.

The internal architecture and design of a service must assume that some sub-components of

the service will be unavailable at some times (either due to scheduled maintenance or

unscheduled problems) – individual components should be resilient to failures of the other

components, or at least the failures modes should be understood and documented, together

with the impact on the overall service. Experience has shown time and again that this is the

major cause for „mysterious‟ service failures and lock-ups - and these sorts of problems can

absorb considerable debugging effort. What happens to a service component, for example,

when the central logging server all the components rely on goes down? Does it stop? Is it

acceptable (from an audit point of view) for the service to continue without the central logger?

Another example of over-coupled architectures is the often excessive use of remote procedure

call between sub-components. Sometimes the use of RPC desirable, but generally, passing

critical information in this way should be avoided – favouring instead the use of a

transactional system such as a database.

Limiting the state maintained in the middle-tier of a service is also important – for example,

the LFC and FTS services commit frequently to the database and the user operations on the

service are designed to be transactional, such that even in the case of immediate power loss,

they will come back up without any loss of data that the user has committed into the service

(or any corrupted state). Sessions, if required, should be migratable, or at least, individual

instances of the load-balanced service should be „drainable‟. The use of industry-standard

components (e.g. Apache) to build up a service helps with this since many of these service-

oriented features come „for free‟.

The basic rule of „Think Service‟ should be applied to the middleware design – this is often

overlooked in the rush to get user-facing features „out of the door‟. Can a service be cleanly

paused without affecting the user‟s ability to interact with it? Can a node / channel / part of

the service be cleanly „drained‟ such that its removal does not affect the running service? The

robustness and resilience of the overall service are critically dependent on providing to the

service manager facilities to allow common scheduled interventions (e.g. node replacement,

kernel upgrade) to take place with minimum impact to the service; these facilities can also

help ameliorate the impact of unscheduled interventions.

For a distributed Grid where the often the overall service that the user „cares about‟ depends

on multiple services, potentially in multiple administrative domains (e.g. file transfer) the

same rule applies – services should be designed assuming that there will be occasional

outages of their dependent services, outages of the wide-area network and other such glitches

[Rules of Distributed Computing]. Ideally, the middleware should seek to „add value‟ in this

regard making the overall service more resilient to these glitches (“The whole is greater than

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

7

the sum of its parts”). These features should then be fed back into the grid operational

procedures (or automated systems) to make sure that they are used where appropriate. The

other point is to think how the overall service will be debugged - which leads to requirements

such as the adoption of a reasonably uniform logging format (e.g. use UTC in log timestamps,

or at worst standard TZ-stamped formats)

Often the most critical part of grid services is the database. Apart from the HA deployment of

the database itself, there are a number of simple techniques to improve the reliability of

middleware with regard to its interaction with the database:

 Connection retries. The middleware should retry to connect if a database connection

becomes unusable. There are a variety of standard connection-pooling

implementations available that do this, many coming for „free‟ if you build the

application using an industry-standard tool such as Apache or J2EE containers. For

multi-threaded applications, connection pooling is also critical for performance since

databases suffer rather badly under constant connection/reconnection loads. Making

sure the application and its deployment scripts are written to make use of the DB‟s

High Availability features also help considerably (e.g. Oracle‟s Transparent

Application Failover);

 Using the database to enforce all known integrity constraints is good design and helps

considerably for the robustness of a service. It helps catch application logic errors

which can otherwise be very hard to debug. In an environment (such as HEP) where

the application requirements are evolving, ad-hoc „scripts‟ tend to appear, either bug

workarounds or one-off tools providing functionality not in the software (for example,

“please add this extra ACL to all 30 million files in this file catalog with no online

performance impact”). Having the database enforce constraints is advisable since not

all of these „scripts‟ are of production quality and experience has shown that the cost

of logical schema corruption on a production system is extremely high;

 Testing of the application with new versions of the (database) software prior to its

deployment is also critical to smooth service operations – it is not unknown for high

performance grid applications to expose bugs and glitches in new versions of the

database software;

 Testing the application at an appropriate scale on a reasonably sized validation cluster is

also important, since many issues only appear at close to production scale;

 Maintain a good relationship with your database administrator (DBA), and don‟t treat

the database as a „black box‟. There are a number of simple techniques your DBA can

advise you on – the use of bind variables (your DBA can show you where you forgot

to use them), appropriate schema design, appropriate use of indices (your DBA can

show you where you need to define a new one) and appropriate use of more advanced

DB-specific features such as table partitioning. These features become more and more

important as the amount of data stored by your service grows (and, if neglected, will

typically begin to bite just as your main production phase begins, when you have the

least time to deal with it).

Many more suggestions for good database / software interactions (focussed on Oracle) can be

found in [6].

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

8

9. Critical services

The services that an LHC experiment relies on to run its production include a number of

important VO-specific components over and above the standard Grid middleware-based ones.

If one of these services is down or impaired, the experiment is impacted at least as severely as

if one of the key Grid services was down. It is therefore essential to address the reliability of

these components. A proposal that has yet to be put in place is to treat these services in the

same manner as the standard Grid services, including techniques for writing robust services as

well as their deployment and operation. Particularly in the early months and years of data

taking, it is likely that there will still be some residual instability in some of these services and

it is proposed that in the key areas of storage, Grid data management and databases for

physics that an on-call service is established. This would allow technical specialists to be

contacted 24x7 in case of problems that cannot be resolved using the standard documented

procedures. It will clearly provide significant motivation to further improve the robustness of

the services and it is foreseen that the need for such on-call be reviewed annually. For other

important services, for which a permanent on-call rota is not justified, named contacts within

each of the experiments will be able to call out an expert by passing through the console

operators. Such interventions need to be relatively rare and will also be regularly monitored to

understand both the need and sustainability of the system.

10. Monitoring, Logging and Reporting

These related but distinct aspects of running a service are often confused. Furthermore, the

specific information that should be presented depends very much on the target audience. A

common trap is to try and build everything into a single tool, which continues to grow until it

is un-maintainable and even unusable. For example, a funding agency may be concerned with

how well the resources provided being used. A VO manager may wish to see how well their

production is proceeding. A site administrator on the other hand may simply want to see if his

or her services up and running and meeting the agreed MoU targets. The on-duty operations

team will typically want to know if there any outstanding alarms. Finally, an LHCC referee

may want to see how the overall preparation progressing with any areas of concern

highlighted. Nevertheless, much of the information that would need to be collected is

common and so it is important to separate the collection from presentation (views…), as well

as the discussion on metrics. It is precisely this approach that is being adopted – with some

success – by the LCG monitoring working groups that were created one year ago. In addition,

the issue of improved and consistent logging is being actively pursued by the middleware

developers – the status of both of these issues being presented at the EGEE‟07 conference in

Budapest.

11. Mind The Gap

During the above conference, a number of service problems came up that highlighted the need

for well documented – and followed – procedures, as well as excellent communication. To be

explicit, three significant service problems came up in a single week – all of which were

easily avoidable. These were as follows:

 A bug in Oracle client libraries – both documented and already fixed in production

releases – caused a number of daemons to go into an infinite loop (after 248 days of

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

9

uptime – the maximum number of clock-ticks (1/10s) that can be represented in a 32bit

integer). An analysis of the problem revealed that not only are there numerous methods

for deploying Oracle client releases but also there was no consistent agreement for

which of these to use, nor for moving to new versions;

 A change to the service availability algorithm – improved in principle at the various

management boards – was released in production without being scheduled or even

announced via the regular operations meetings. This caused significant knock-on effects

in other service monitoring tools;

 A database house-keeping exercise resulted in an index being de-selected, with

following service overload and meltdown.

Whilst it is unlikely that all such problems can be avoided in the future, we cannot afford to

tolerate such a high rate of completely avoidable issues. Hopefully, the experience from these

events will reinforce the widespread adoption of the simple and lightweight procedures that

have been shown to work in exactly these situations.

12. Caveat Emptor

A final piece of cautionary advice concerns coupling between services and the sometimes

unexpected consequences. Two concrete examples in this area relate to the choice of database

synchronization technology that we have deployed. This is used for the file catalog

middleware component and for detector and calibration alignment information – in both cases

the corresponding information is kept in sync between the main sites with minimal delays.

However, this has meant on one occasion that a key database feature had to be disabled – with

significant consequences on the ability to recover the service in case of accidental loss of data

– and on another led to silent data corruption. On balance, the benefits certainly outweigh the

drawbacks, but underline the need for openness and transparency – the reasons for choosing a

specific release and the consequences must be clear to all, particularly in the case of complex,

layered services.

13. Conclusions on Robust Services

Taken together, these techniques and procedures have been demonstrated to be sufficient to

offer robust and resilient services, but are unfortunately often overlooked. We know how to

run reliable services – this is not to say that no user support issues remain! The issue of

support for large and diverse user communities of a system with the complexity of the Grid is

certainly one of the challenges that will need to be addressed by future e-infrastructures. In

particular, it is essential that we neither design nor use Grids in such a way that the

unavailability of a single service renders a site – or worse the entire Grid – down. Such

problems should, in the worst case, result in a small inefficiency of the overall Grid resources,

rather than a downtime.

Jamie Shiers / Robust and Resilient Services – How to design, build and operate them

10

14. Summary and conclusions

We have described a set of basic techniques for the design, implementation, deployment and

operation of robust and resilient Grid services. These techniques are now being extended

beyond the basic set of WLCG services to cover also experiment-specific services that are

critical to their production activities. These techniques are sufficiently general as to be

applicable to many other application domains and indeed other Grid projects. May the force

be with you.

References

[1] A Worldwide Production Grid Service Built on EGEE and OSG Infrastructures – Lessons

Learnt and Long-term Requirements: presented at this conference.

[2] The Worldwide LHC Computing Grid (WLCG), http://lcg.web.cern.ch/LCG/.

[3] Memorandum of Understanding for Collaboration in the Deployment and Exploitation

of the Worldwide LHC Computing Grid, available at http://lcg.web.cern.ch/LCG/C-

RRB/MoU/WLCGMoU.pdf.

[4] LCG Technical Design Report, CERN-LHCC-2005-024, available at

http://lcg.web.cern.ch/LCG/tdr/.
[5] I. Foster, Argonne National Laboratory and University of Chicago, What is the Grid? A Three

Point Checklist, 2002.

[6] Effective Oracle by Design (Osborne ORACLE Press Series), Thomas Kyte.

http://lcg.web.cern.ch/LCG/
http://lcg.web.cern.ch/LCG/C-RRB/MoU/WLCGMoU.pdf
http://lcg.web.cern.ch/LCG/C-RRB/MoU/WLCGMoU.pdf
http://lcg.web.cern.ch/LCG/C-RRB/MoU/WLCGMoU.pdf
http://lcg.web.cern.ch/LCG/C-RRB/MoU/WLCGMoU.pdf
http://lcg.web.cern.ch/LCG/tdr/
http://www.amazon.com/exec/obidos/search-handle-url/102-3368306-7914514?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Thomas%20Kyte

