Are there nuclear stucture experiment relevant for neutron stars physics ?

Roadmap

1) Structure of a NS (EOS)

2) Cooling of the NS (Superfluidity, exotic nuclei)

3) Nucleosynthesis in a NS (dripline, E1 strength)

1) Structure of a neutron star

Why Neutron stars?

It is the stars, The stars above us govern our conditions. King Lear

- Landau (1932) : compact object held by the gravity
- Remnant of a core-collapse supernova
- Densiest « active » object (star) of the Universe : emits radio, visible, X, Gamma rays ...
- Pulsars (1968), binaries, magnetars (10¹¹ T)

•May be a site for the **r-process**

the acceleration of **ultra high energy cosmic** rays (10²⁰ eV)

GRB, ...

Anatomy

Equation of state

$$E(\rho,\delta) = E(\rho,0) + a_{sym}(\rho)\delta^2$$

D.T.Khoa et al. Nucl. Phys. A602 (1996) 98

- Densities from 10⁻⁸ ρ_0 to 3 ρ_0
- Isospin asymmetry from 0 to 1

Mass and radius of a neutron star

•~1500 neutrons stars are known

J.M. Lattimer and M. Prakash., Astrop. Jour. 550 (2001) 426

- Typical masse: 1.4 solar mass
- Mass from Kepler law in binary systems (NS+NS)
- Radii from moment of inertia from luminosity and rotation velocity

Neutron skin in ²⁰⁸Pb and symmetry energy

R.J. Furnstahl., NPA. 706 (2002) 85

A.W. Steiner et al, Phys. Rep. 411 (2005) 325

14

16

Neutron skin in ²⁰⁸Pb and crust

C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86 (2001) 5647

Pygmy modes can help

A. Klimkiewicz et al, Phys. Rev. C76 (2007) 051603(R)

Compression modes in nuclei

M. Uchida et al., PLB**557**(2003)12

Determination of $K_{\!\infty}$

- Microscopic method: prediction of the GMR centroid using mean-field approach
- $\bullet~K_{\scriptscriptstyle\infty}$ from the functionnal describing the GMR data

Uncertainties on $K_{\!\infty}$

Is the method well defined ?

Physics with active targets

Low I: closer to the drip-line, resonances, decay
Low E: GMR C. Monrozeau et al, Phys. Rev. Lett. 100 (2008) 042501
TPC: cluster structure, decay

K. Miernik et al., PRL99(2007)192501

2) Cooling of a neutron star

Cooling of a neutron star

•The fraction of proton needed depends on the symmetry energy

$$n \rightarrow p + e^{-} + \overline{\nu_e} ,$$
$$e^{-} + p \rightarrow n + \nu_e .$$

URCA process

$$n+n \rightarrow n+p+e^-+\overline{\nu_e}$$

Cooling of a neutron star

J.M. Lattimer et al., Astrop. Jour. 425 (1994) 802

The inner crust

Very neutron-rich systems

Pairing in a WS cell

¹⁸⁰⁰Sn : the pairing field is 2 times larger in the neutron gas than in the cluster
⁹⁸²Ge : the maximum is located on the cluster surface

N. Sandulescu, PRC70 (2004) 025801

E. Khan, N. Sandulescu, Nguyen Van Giai, PRC71 (2005) 042801

Cooling results

Pairing Vibrations: helps to constrain pairing?

- Two particles 0+ state ~ independent from the remaining part of the nuclei
 Harmonic vibrations
- Pairing vibrations : L=0, sensitive to the pairing interaction
- Giant Pairing Vibrations : collective mode in the 2n transfer channel

analogous to a giant resonance

• Reaction model : 2 particle transfer (sequential, direct, ...)

Supergiant resonances

E. Khan, N. Sandulescu, Nguyen Van Giai, PRC71 (2005) 042801

Low-lying excitations

M. Grasso, E. Khan and J. Margueron, Nucl. Phys. A807, 1 (2008)

Evolution of the response

- Strong low-lying state already in cells close to the drip-line nuclei
- SGR magnitude is due to the neutron of the gas
- SGR energy position : contribution from the cluster, and pairing effects

Specific heat of the collective response

Experiment proposal

• Specific heat : spectroscopy of drip-line nuclei drives the excitation spectrum of the Wigner-Seitz cells (low-lying states)

Coulex or integrated (p,p') on the most neutron-rich Sn available (¹³⁸Sn)

Coupling the clusters

- crystal : clusters in a body-centered cubic lattice
 - band theory (spatial periodicity)
- WS accurate for static properties (n density)
- For dynamics, WS not valid if E< 100 keV

k< k_{cell}: no cluster effect ~ homegenous n gas

$k > k_{cell}$: n of the gas diffract on the clusters

N. Chamel, S. Naimi, E. Khan, J. Margueron, PRC75 (2007) 055806

N. Chamel, J. Margueron, E. Khan, PRC79 (2009) 012801

• Crust/core interface : deformed structures

- QMD calculations for pasta phases

G. Watanabe *et al.*, PRC66 (2002) 012801

•Dynamic evolution of infinite matter of nuclei leading to self-organised structure

credit : HST

3) Nucleosynthesis in a neutron star

Two Neutron stars merger simulation

credit : Alan Calder

Astrophysical site ?

1) Core-collapse supernovae

2) Ejection from the neutron star crust

The role of dipole strength in (n,γ) rates

•Statistical model of compound nuclear reaction : Hauser-Feshbach

Photon transmission coefficient T_{γ} sensitive to : • the E1 strength distribution $T_{E1}(E)$

• the level density $\rho(E)$

Why using microscopic calculations?

Phenomenologic

Fast and simple to useExtrapolations ?No feedback about nuclear structure

Microscopic

- •Efforts consuming ?
- •More suited to extrapolate far from stability : neutron skin
- •Characterize the n-n interaction on the whole nuclear chart
- •Test the model validity on a large scale

rms on GDR centroids :	
SIII	2267 keV
SGII	573 keV
SLy4	457 keV
MSk7	564 keV
BSk7	485 keV

Astrophysical impact

S. Goriely, E. Khan, M. Samyn, NPA**739** (2004) 331 S. Goriely et al., NPA**758** (2005) 587

Conclusion & outlooks

There is no nuclear structure experiment directly applied to NS
There are several experiments usefull to constrain nuclear structure models for NS

• n skin, pygmy response, GMR, pairing (masses, pairing vibrations), Spectroscopy of low-lying states

• Exotic nuclei: neutron rich system (skin) at low density