SPL power coupler double walled tube thermo-mechanical studies

Ofelia Capatina, Thierry Renaglia CERN, EN/MME

Overview

CERN EN

- Introduction
- Thermal studies
- Mechanical considerations
- Conclusions

Review of SPL RF power couplers 16/March/2010

Introduction

Introduction

- SPL coupler double walled tube
 - Thermal studies performed to identify optimum design parameters => corresponding heat loads and dimensional stability
 - Thermal studies validated with LHC coupler experimental data
 - Mechanical studies to check dimension compatibility with mechanical loads

O. Capatina, T. Renaglia EN/MME Review of SPL RF power couplers 16/March/2010

- Model description
- Model applied to LHC double wall tube for comparison to experimental data
- Results for SPL double wall coupler
- Few words about the antenna

- Model description
 - Copper on Stainless steel wall
 - Semi-analitical model taking into account

$$R_{\text{ext_elect}}(T) := \frac{\rho_{\text{CU_RRR30}}(T)}{\delta\big(\rho_{\text{CU_RRR30}}(T), \omega_0\big) \cdot \pi \cdot d_{\text{tube_coupleur_int}}}$$

O. Capatina, T. Renaglia EN/MME Review of SPL RF power couplers 16/March/2010

7

- LHC Double walled tube
 - Connected to the vacuum vessel via a bellow
 - Lower part at 4.5 K and upper part
 - Heater at upper part to insure 30 °C of flange temperature
 - Temperature sensors
 - Flowmeter measuring the cooling gas at the recovery line

CERN EN

- LHC Double walled tube
 - 250 kW CW, 400 MHz, 75 Ω
 - H=395 mm; D=144 mm; eint=2.5 mm; eext=1 mm
 - Copper on stainless steel; Copper RRR = 30 (Sergio Calatroni)
 - Gasflow ~ 18 mgram/sec

- LHC Double walled tube
 - Experimental results (measured wall temperature for different input power)

Timeseries Chart between 2010-02-23 06:04:00 and 2010-02-25 10:13:11 (UTC_TIME)

- LHC Double walled tube
 - Calculated / measured results (wall temperature for different input power)

Input power	0 W	40 kW	80 kW	100 kW
Calculated temperature at sensor position	92 K	105 K	118 K	125 K
Measured temperature	95 K	105 K	118 K	125 K

=> model validated

- SPL Double walled tube
 - Cooling gas at 4.5 K input
 - Lower part at 2 K and upper part at 300 K
 - Heater at upper part to insure 30 °C of flange temperature

- SPL Double walled tube
 - 1000 kW pulsed (100 kW average), 704.4 MHz, 50 Ω
 - H=300 mm; D=100 mm; eint=1.5 mm; eext=2 mm
 - Copper on stainless steel; Copper RRR = 30 (Sergio Calatroni)

Review of SPL RF power couplers 16/March/2010

• Why cooling the wall?

 No cooling temperature profile
=> Gives 21W to 2K

position_i

- Why a heater at the top flange?
 - The heater insures 30 °C of flange temperature
 - If no heater, in order to have the same temperature at the flange when no power on for the same thickness => height of more than 1m

Some results

Massflow mgram/sec	21		23		28		35		42	
Power	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF
Temp. gas out	286 K	277 К	283 K	273 K	271 K	242 K	255 K	205 K	232 К	180 K
Q thermal load to 2K	2.4 W	0.1 W	1.7 W	0.1 W	0.4 W	0.1 W	0.1 W	0.1 W	0.1 W	0.1 W
Q heater	19 W	32 W	21 W	34 W	29 W	38 W	39 W	41 W	46 W	44 W
ΔL	0.1 mm (0.63-0.53)mm				0.05 mm (0.66-0.61)		~ 0 mm (0.67-0.67)			

 => if we want negligible heat load to the 2K, the exit part of the cooling tube shall be insulated (since temperature < 290K)

- Few words about the antenna : BRIEF ESTIMATIONS
 - For a heat exchange coeff of 50 W/m2*K
 - $\Rightarrow \Delta T$ antenna/air=30 deg

- For an airflow of 0.833m3/min
- $\Rightarrow \Delta T air in/out=9.5 deg$

$$P_{diss_average_antenne} = 56.954 W$$

 $d_{antenne_ext}=~0.043\,m$

$$n_{type_air} := 50 \cdot \frac{W}{m^2 \cdot K}$$

 $S_{\text{echange}}(h) \mathrel{\mathop:}= \pi \cdot \big(\, d_{\text{antenne_ext}} - \, 0.002 \cdot 2 \cdot m \big) \cdot h$

 $\Delta T_{antenne_air} := \frac{P_{diss_average_antenne}}{h_{tvpe_air} \cdot S_{echange}(h_{tube_coupleur})}$

 $\mathbf{c}_{\text{v_air_300K}} \coloneqq 1.2 \cdot \frac{\text{kg}}{...3} \cdot 0.719 \cdot 10^3 \cdot \frac{\text{joule}}{\text{kg}} \cdot \text{K}^{-1}$

debit_air_cooling_antenne := $v_{air} \cdot S_{air}$

 $S_{echange}(h_{tube_coupleur}) = 0.037 m^2$

$$\Delta T_{antenne} = 30.99 \, \mathrm{K}$$

debit_air_cooling_antenne = 0.833 $\frac{m^3}{min}$

$$\frac{P_{diss_average_antenne} \cdot 2}{c_{v_air_300K} \cdot debit_air_cooling_antenne} = 9.506 \, \mathrm{K}$$

 $\mathbf{v}_{air} \coloneqq 200 \cdot \frac{\mathrm{km}}{\mathrm{hr}}$

Mechanical studies

- Verification of maximum stress and max deformation for different STATIC load cases
 - Cavity supported on the double wall only (cantilever)
 - Cavity simply supported at the other end
- Load applied to the double wall by the cavity under own weight
 - Factor ~ 70 of torque applied to the double wall between
 - Cantilever
 - Supported at the other extremity

Mechanical studies

- Maximum stress and max deformation
 - Cavity supported on the double wall only (cantilever)

Mechanical studies

- Maximum stress and max deformation
 - · Cavity simply supported at the other end

• Acceptable

O. Capatina, T. Renaglia EN/MME Review of SPL RF power couplers 16/March/2010

Conclusions

- Thermal
 - For presented geometry (300mm x 1.5mm int + 2mm ext), we can reduce down to negligible the thermal loads to 2K, but:
 - Heater needed at the upper flange
 - Exit tube of the cooling gas has to be insulated
 - Induced height modification of the double wall by power on/off depend on gas flow but in the order of 0.1mm
- Mechanical
 - From the point of view of mechanical behaviour of the double wall, for the presented geometry:
 - The cavity supported only by the double wall => not acceptable
 - The cavity supported by the double wall + supported at the other extremity => acceptable
 - Dynamic behavior to be checked also