DARK MATTER IN EARLY LHC DATA

Jonathan Feng UC Irvine

West Coast ATLAS Forum 24 March 2010

OUTLINE

- Long-Lived Charged Particles
 - SuperWIMP DM
 - Feng, Rajaraman, Takayama (2003)
- Delayed Photons/Diphotons
 - Light Gravitino DM
 - Lee, Feng, Kamionkowski (in preparation)
- Exotic 4th Generation Quarks
 - WIMPless DM
 - Alwall, Feng, Kumar, Su (1002.3366 hep-ph)

DARK MATTER

As motivation for new collider physics:

- Not only an aesthetic problem
 - Unlike cosmological constant, gauge hierarchy problems
- Indications it is linked to weak-scale physics
 - Unlike neutrino mass, baryogenesis
- Interesting
 - Highly interdisciplinary, inner space-outer space connections

DARK MATTER CANDIDATES

- The observational constraints are no match for the creativity of theorists
- It could be axions, WIMPzillas, etc., in which case the LHC will have very little to say

"Dark Matter Particle Candidates and Methods of Detection," 1003.0904, to appear in ARAA

HEPAP/AAAC DMSAG Subpanel (2007)

DM @ LHC: RELIC DENSITY

• The resulting relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

- For a WIMP, $m_X \sim 100 \text{ GeV}$ and $g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$
- WIMP miracle: weak-scale particles naturally have the right density to be dark matter

DM @ LHC: STABILITY

- The WIMP miracle assumes a new particle is stable. Why should this be?
- LEP and SLC confirmed the standard model, stringently constrained effects of new particles
- Problem: Gauge hierarchy → new particles ~100 GeV LEP/SLC → new particles > 3 TeV (even considering only flavor-, CP-, B-, and L-conserving effects)

LEP'S COSMOLOGICAL LEGACY

• Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable.

Cheng, Low (2003); Wudka (2003)

- This is a general argument that the LHC may make DM.
- In specific contexts, this may be augmented by additional arguments.
 E.g., in SUSY, proton decay → R-parity → stable LSP.

EXAMPLES

Supersymmetry

- R-parity
- Neutralino DM

Fayet, Farrar (1974)

Goldberg (1983) Ellis et al. (1984)

Universal Extra Dimensions – KK-parity

Appelquist, Cheng, Dobrescu (2000)

- Kaluza-Klein DM

Servant, Tait (2002)

Cheng, Feng, Matchev (2002)

Branes

. . .

- Brane-parity
- Branons DM

Cembranos, Dobado, Maroto (2003)

New Particle States

THE STANDARD LORE

- These observations have led to the commonly heard statement that DM implies MET at the LHC.
- This is unfortunate: MET is not so great for early discoveries, even worse for precision studies.
- Fortunately, it's also wrong. There are great many other possibilities; focus here on possibilities for early discoveries, spectacular signals.

SUPERWIMP DM

Feng, Rajaraman, Takayama (2003)

Consider (high-scale) supersymmetry. There is a gravitino, mass ~ 100 GeV, couplings ~ M_W/M_{Pl} ~ 10⁻¹⁶

Ĝ not LSP

Assumption of most of literature

• Ĝ LSP

 Completely different cosmology and particle physics

SUPERWIMP RELICS

• Consider \tilde{G} LSPs: WIMPs freeze out as usual, but then decay to \tilde{G} after $M_{\rm Pl}^2/M_W^3$ ~ seconds to months

COSMOLOGY OF LATE DECAYS

Late decays impact light element abundances

- Lots of complicated nucleoparticlecosmochemistry
- BBN typically excludes very large lifetimes
- BBN excludes $\chi \rightarrow Z \tilde{G}$, but $\tilde{I} \rightarrow I \tilde{G}$ ok

24 Mar 10

LATE DECAYS AND ⁷Li/⁶Li

- ⁷Li does not agree with standard BBN prediction
 - Too low by factor of 3,
 ~5σ at face value
 - May be solved by convection in stars, but then why so uniform?
- ⁶Li may also not agree
 - Too high
- Late decays can fix either one or both
- For mSUGRA, fixing both, and requiring Ω_{G̃} = 0.1 → heavy sleptons > TeV

BOTTOM LINE

- This scenario
 - Solves the gauge hierarchy problem
 - Has DM with naturally the right relic density
 - Is consistent with EW precision constraints
 - Is consistent with all other constraints
 - Collider signal is CHAMPs, not MET

MODEL FRAMEWORKS

(UeV)

 $m_{1/2}$

 mSUGRA's famous 4+1 parameters:

 $m_0^2, M_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)$

- Excluded regions
 - LEP limits
 - Stau LSP
- But this is incomplete
 - Missing $m_{\tilde{G}}$
 - Assumes $m_0^2 > 0$

mSugra with $tan\beta = 10$, $A_0 = 0$, $\mu > 0$ 1500 1400 Baer, 1300 Balazs, 1200 21 OS 1100 Belyaev, Krupovnickas, Tata (2003) .01 1000 900 21 SS $m(\tilde{g})=2 TeV$ 800 $\geq 4l$ E_{π}^{miss} 700 600 500 400300 $m(\tilde{u}_{I})=2 TeV$ 200 100 1000 2000 3000 4000 5000 0 m_0 (GeV)

THE COMPLETE MSUGRA

 $M_{1/2}$

• Extend the mSUGRA parameters to

 $m_0^2, M_{1/2}, A_0, \tan\beta, \ \mathrm{sign}(\mu), \ \mathrm{and} \ m_{3/2}$

- If LSP = gravitino, then no reason to exclude stau NLSP region
- Also include small or negative

 $m_0 \equiv \operatorname{sign}(m_0^2) \sqrt{|m_0^2|}$

- This includes no-scale/gauginomediated models with m₀ = 0
- Much of the new parameter space is viable with a slepton NLSP and a gravitino LSP

UNIVERSAL EXTRA DIMENSIONS

Appelquist, Cheng, Dobrescu (2000)

- Assume 1 extra dimension, where the 5th dimension is a circle with radius R
- All Kaluza-Klein level 1 states have mass R⁻¹
- This is broken by many effects, but the lightest KK states are still highly degenerate

UED COMMON LORE

- UED looks like SUSY
 - *n*=2 and higher levels typically out of reach
 - *n*=1 Higgses → *A*, H^0 , H^{\pm}
 - Colored particles are heavier than uncolored ones
 - LKP is stable $B^1 \rightarrow MET$ at LHC
- Spectrum is more degenerate, but basically similar to SUSY

"Bosonic supersymmetry"

Cheng, Matchev, Schmaltz (2002)

BUT THERE'S MORE

- *R* is the only new parameter, but it is not the only free parameter: the Higgs boson mass is unknown
- Original collider studies set m_h=120 GeV, but it can be larger (KK towers modify EW precision constraints)
- H^0 , A, H^{\pm} masses depend on m_h
- Also, there's another state in the theory: the KK graviton G¹

THE COMPLETE (MINIMAL) UED

 In minimal UED, after all particle and astrophysical constraints, NLKP → LKP is

 $H^{\pm 1} \rightarrow B^1 f f'$

- Mass splitting $\Delta m < 7 \text{ GeV}$
- Decay length $c\tau > 10 \ \mu m$

20

CURRENT BOUNDS

- Current Bounds
 - LEP: slepton mass > 97.5 GeV, chargino > 102.5 GeV
 - CDF Run I: slepton cross section < 1 pb
 - D0 Run II: slepton cross section < 0.1 pb
 - assumes only Drell-Yan pair production (no cascades)
 - require 2 slow, isolated "muons"
 - about a factor of 5 from unexplored mass territory

LHC DISCOVERY POTENTIAL

Rajaraman, Smith (2006)

- Look for Drell-Yan slepton pair production
- Require events with 2 central, isolated "muons" with
 - p > 100 GeV
 - p_T > 20 GeV

	Total cross-section	After Drell-Yan cuts
Model A	18pb	$9\mathrm{pb}$
Model B	$43 \mathrm{fb}$	$28 \mathrm{fb}$
QCD	$10^2 { m mb}$	$< 1 \mathrm{pb}$
$\gamma^*/Z \to \mu \mu$	$100 \mathrm{nb}$	$3\mathrm{pb}$
W+jet	$360 \mathrm{nb}$	$< 40 \mathrm{fb}$
Z+jet	$150 \mathrm{nb}$	$7\mathrm{pb}$
$t\bar{t}$	$800 \mathrm{pb}$	430fb
WW,WZ,ZZ	$2.5 \mathrm{nb}$	$150 \mathrm{fb}$

Time delay of	0 ns	1 ns	2ns	3ns	4ns	5ns
Drell-Yan; background	$10 \mathrm{pb}$	1.35pb	$3.3 \mathrm{fb}$	0.2ab	$< 0.1 \mathrm{ab}$	$< 0.1 \mathrm{ab}$
Drell-Yan; Model A	$9\mathrm{pb}$	$5.2 \mathrm{pb}$	$2.9 \mathrm{pb}$	$1.8 \mathrm{pb}$	1.1 pb	$750 \mathrm{fb}$

 Finally assume TOF detector resolution of 1 ns, require both muons to have TOF delays > 3 ns

• Require 5σ signal with S > 10 events for discovery

- Model A is "best case scenario"
- Lesson: Very early on, the LHC will probe new territory

CMS/ATLAS ANALYSES

- Ongoing work on CHAMP search and reconstruction
 - ATLAS (Tarem et al.): added ToF calculation to level 2 trigger to improve reconstruction efficiency
 - CMS (Rizzi): studied both dE/dx and ToF (Analysis Note (2006))

LIGHT GRAVITINO DM

- The original SUSY DM scenario
 - Universe cools from high temperature
 - Gravitinos decouple while relativistic, $\Omega_{\tilde{G}} h^2 \approx m_{\tilde{G}} / 800 \text{ eV}$
 - Favored scenario: keV gravitinos

Pagels, Primack (1982)

- This minimal scenario is now excluded
 - $Ω_{\tilde{G}} h^2 < 0.1 → m_{\tilde{G}} < 80 \text{ eV}$
 - Gravitinos not too hot $\rightarrow m_{\tilde{G}}$ > few keV
 - Disfavored scenario: keV gravitinos

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto (2005) Seljak, Makarov, McDonald, Trac (2006)

- Two ways out
 - Λ WDM: m_G > few keV. Gravitinos are all the DM, but thermal density is diluted by low reheating temperature,...
 - Λ WCDM: m_G < 16 eV. Gravitinos are only part of the DM, mixed warm-cold scenario

CURRENT BOUNDS

LIGHT GRAVITINOS AT THE LHC

Lee, Feng, Kamionkowski (in preparation)

WIMPLESS DM

Feng, Kumar (2008); Feng, Tu, Yu (2008)

- Consider hidden DM, that is, DM with no SM gauge interactions. What can we say?
- Generically, nothing
- But in SUSY models that solve the new physics flavor problem (gauge-mediated models, anomaly-mediated models) the superpartner masses are determined by gauge couplings

$$m_X \sim g_X^2$$

THE WIMPLESS MIRACLE

• This leaves the thermal relic density invariant:

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

The thermal relic density constrains only one combination of g_X and m_X. These models map out the remaining degree of freedom; candidates have a range of masses and couplings, but always the right relic density.

 This decouples the WIMP miracle from WIMPs (is this what the flavor problem is really trying to tell us?)

DAMA

- The DAMA signal is now at 8.9σ
- The m_x ~ 100 GeV favored region is excluded by many other experiments
- One marginally viable solution is light dark matter with very large cross section

 $m_X \sim 5-10 \text{ GeV}$ $\sigma_{SI} \sim 10^{-40} \text{ cm}^2$

COGENT

 The light DM scenario is, however, now tentatively supported by CoGeNT

 This region of parameter space is very hard to obtain with conventional WIMPs: for example, for neutralinos, chirality flip implies large suppression

WIMPLESS SIGNALS

 Hidden DM may interact with normal matter through non-gauge interactions

Х

Х

WIMPLESS DIRECT DETECTION

- The DAMA/CoGeNT region is easy to reach with WIMPless DM
- E.g., assume WIMPless DM X is a scalar, Y is a fermion, interact with b quarks through λ_b (XY₁b₁ + XY_Rb_R) + m_yY₁Y_R
- Naturally correct mass, cross section
 - $m_{X} \sim 5-10 \text{ GeV}$ (WIMPless miracle)
 - large σ_{SI} for $\lambda_b \sim 0.3 1$ (flip chirality on heavy Y propagator)

EXOTIC T', B' AT LHC

- Gauge invariance → Y's are colored, similar to 4th generation quarks
- EW precision studies, direct searches, perturbativity → 300 GeV < m_Y < 600 GeV

 $X \xrightarrow{\lambda_b} \lambda_b \xrightarrow{\lambda_b} X$ $y_L Y_R = b_R$ q = q

- Signals
 - − T' T' \rightarrow tXtX, B' B' \rightarrow bX bX
 - different from standard 4th generation quarks (T' → b W)
 - best channel is all hadronic

MadGraph, MadEvent, Pythia 6.4.20, PGS4)

Cut	T'(300)	T' (400)	T' (500)	$t\bar{t}~(1~\tau)$	$t\bar{t}~(1~e/\mu)$	$t\bar{t}$ (had)	W+jets	Z+jets
No cut	14.89	3.16	0.922	43.96	66.67	104.59	(42.28)	(18.86)
0 isolated leptons	6.75	1.5	0.45	16.88	13.11	72.29	(16.8)	(15.71)
$\not\!\!\!E_T > 100 \mathrm{GeV}$	4.15	1.21	0.394	3.91	2.67	0.097	(11.25)	(11.48)
≥ 5 jets	1.34	0.406	0.135	0.664	0.47	0.031	0.305	0.212
$\Delta \phi \ { m cuts}$	1.19	0.374	0.125	0.56	0.41	0.01	0.265	0.187

EXOTIC 4TH QUARKS AT LHC

Entire $m_x \sim 10 \text{ GeV}$ region can be excluded by 10 TeV LHC with 300 pb⁻¹ (~7 TeV LHC with 1 fb⁻¹)

Significant discovery prospects with early LHC data

480

m_{T'} (GeV)

300 nb*

550

m_{T'} (GeV)

600

CONCLUSIONS

- There are many signals that are just as wellmotivated by dark matter, the gauge hierarchy problem, and all other existing constraints as MET
 - CHAMPS
 - Delayed photons, diphotons
 - Exotic 4th generation quarks
- Real possibilities for early LHC data (and in some cases, for the Tevatron)