SUSY Without (Much) Prejudice at ATLAS

Detector characteristics Muon Detectors Electromagnetic Calorimeters Width: 44m Diameter: 22m Weight: 7000t Solenoid NAC - ATLAS V199 Forward Calorimeters End Cap Toroid Inner Detector Barrel Toroid Shielding Hadronic Calorimeters

J.A. Conley, J. S. Gainer, J. L. Hewett, M.-P. Le & TGR

06/16/2010

- Motivational & Philosophical Introduction
- Review of Model Set Generation (quickly)
- Some General Properties of Models (quickly)
- LHC/ATLAS Analysis & Preliminary Results
- Summary & Conclusions

- The MSSM is very difficult to study due to the very large number of soft SUSY breaking parameters (~ 100).
- Analyses are generally limited to a specific SUSY breaking scenario having few parameters.
- So do we really know the MSSM as well as we think??
- Is there another way to approach this problem & yet remain more general ? There are many possibilities.

FEATURE Analysis Assumptions :

- The most general, CP-conserving MSSM with R-parity
- Minimal Flavor Violation at the TeV scale
- The lightest neutralino is the LSP & a thermal relic.
- The first two sfermion generations are degenerate (sfermion type by sfermion type).
- The first two generations have negligible Yukawa's.
- No assumptions about SUSY-breaking or GUT

This leaves us with the pMSSM:

 \rightarrow the MSSM with 19 real, TeV/weak-scale parameters...

What are they??

19 pMSSM Parameters

sfermion masses: m_{Q_1} , m_{Q_3} , m_{u_1} , m_{d_1} , m_{u_3} , m_{d_3} , m_{L_1} , m_{L_3} , m_{e_1} , m_{e_3}

gaugino masses: M_1 , M_2 , M_3 tri-linear couplings: A_b , A_t , A_τ Higgs/Higgsino: μ , M_A , tan β

Note: These are TeV-scale Lagrangian parameters

What are (aren't) the Goals of this Study???

- Prepare a large sample, ~50k, of MSSM models (= parameter space points) satisfying 'all' of the experimental constraints. (Done)
- Examine the properties of the surviving models. Do they look like the model points that have been studied up to now & if not what are the differences?
- Do physics analyses with these models.

Our goal is NOT to find the 'best-fit' model(s) but to discover new SUSY spectra & decay scenarios different from those seen in the more familiar SUSY breaking frameworks leading to possible unexpected surprises at colliders and elsewhere.⁶

How? Perform 2 Random Scans

Linear Priors

10⁷ points – emphasizes moderate masses

 $\begin{array}{l} 100 \; GeV \leq m_{sfermions} \; \leq 1 \; TeV \\ 50 \; GeV \leq |M_1, \, M_2, \, \mu| \leq 1 \; TeV \\ 100 \; GeV \leq \, M_3 \leq 1 \; TeV \\ \sim \!\!\!\! 0.5 \; M_Z \leq \, M_A \; \leq 1 \; TeV \\ 1 \leq tan\beta \leq 50 \\ |A_{t,b,\tau}| \leq 1 \; TeV \end{array}$

Log Priors

2x10⁶ points – emphasizes lower masses but extends to higher masses

 $100 \; GeV \le m_{sfermions} \; \le 3 \; TeV$

 $\begin{array}{l} 10 \; GeV \leq |M_1, \, M_2, \, \mu| \leq 3 \; TeV \\ 100 \; GeV \leq \; M_3 \leq 3 \; TeV \end{array}$

 $\begin{array}{l} \textbf{\sim}0.5 \; M_Z \leq \; M_A \; \leq 3 \; \text{TeV} \\ 1 \leq tan\beta \leq 60 \end{array}$

 $10 \; \text{GeV} \leq \mid A_{t,b,\tau} \mid \leq 3 \; \text{TeV}$

 \rightarrow Comparison of these two scans will show the prior sensitivity. \rightarrow Model generation required ~ 1 core-century of CPU time...this was the real limitation of this part of the study.

Some Constraints

-0.0007 < Δρ < 0.0026 [W-mass, etc.] (PDG'08)

• b \rightarrow s γ : B = (2.5 – 4.1) x 10⁻⁴ ; (HFAG) + Misiak etal. & Becher & Neubert

- $\begin{array}{lll} \bullet \Delta(g\text{-2})_{\mu} & ??? & (30.2 \pm 8.8) \times 10^{-10} & (0809.4062) \\ & (25.5 \pm 8.0) \times 10^{-10} & (Malaescu, Moriond `10) \\ & [15.7 \pm 8.2] \times 10^{-10} & [Davier `09, \tau `s] \\ & \rightarrow (-10 \text{ to } 40) \times 10^{-10} & \text{to be conservative..} \end{array}$
- $\Gamma(Z \rightarrow \text{invisible}) < 2.0 \text{ MeV}$ (LEPEWWG)
- Meson-Antimeson Mixing
- $B \rightarrow \tau \nu$ BaBar/Belle

0.2 < R₁₃ < 5

Isidori & Paradisi, hep-ph/0605012 & Erikson etal., 0808.3551 for loop corrections

• $B_s \rightarrow \mu \mu$ B < 4.5 x 10⁻⁸

(CDF + D0)

- Direct Detection of Dark Matter → Spin-independent limits are completely dominant here. We allow for a factor of 4 variation in the cross section from input uncertainties.
- Dark Matter density: Ωh² < 0.1210 → WMAP +SN +BAO+... We treat this only as an *upper bound* on the LSP DM density to allow for multi-component DM, e.g., axions, etc. Recall the lightest neutralino is the LSP & is a thermal relic
- LEP and Tevatron Direct Higgs & SUSY searches : there are *many* of these searches but they are very complicated with many caveats.... We need to be very cautious in how the constraints are used & some require re-evaluation.

RH Sleptons

Tevatron Constraints : I Squark & Gluino Search

- This is the first SUSY analysis to include these constraints
- 2,3,4 Jets + Missing Energy (D0)

TAE	BLE I: Sele	ection	criteria	for the	$_{ m s}$ three	analyse	s (all energies
and	momenta	in G	eV); see	the te	st for	further	details.

Preselection Cut		All Analyses	
E_T		≥ 40	
Vertex z pos.		< 60 cm	
Acoplanarity		$< 165^{\circ}$	
Selection Cut	* dijet *	"3-jets"	"gluino"
Trigger	dijet	$\mathbf{multijet}$	$\mathbf{multijet}$
$jet_1 p_T^{\circ}$	≥ 35	≥ 35	\geq 35
$\operatorname{jet}_2 p_T^{\circ}$	≥ 35	≥ 35	≥ 35
$jet_3 p_T^{b}$	_	≥ 35	\geq 35
$jet_4 p_T^{b}$	_	_	≥ 20
Electron veto	yes	yes	yes
Muon veto	yes	yes	yes
$\Delta \phi(\not\!\!\! E_T, \text{jet}_1)$	$\geq 90^{\circ}$	$\geq 90^{\circ}$	$\geq 90^{\circ}$
$\Delta \phi({ ot\!\! E_T},{ m jet_2})$	$\geq 50^{\circ}$	$\geq 50^{\circ}$	$\geq 50^{\circ}$
$\Delta \phi_{\min}(\not\!$	$\ge 40^{\circ}$	_	_
H_T	≥ 325	≥ 375	≥ 400
E_T	≥ 225	≥ 175	≥ 100

^aFirst and second jets are also required to be central ($|\eta_{\text{det}}| < 0.8$), with an electromagnetic fraction below 0.95, and to have CPF0 ≥ 0.75 .

^bThird and fourth jets are required to have $|\eta_{det}| < 2.5$, with an electromagnetic fraction below 0.95.

Multiple analyses keyed to look for:

Squarks-> jet +MET Gluinos -> 2 j + MET

The search is based on mSUGRA type sparticle spectrum assumptions which can be VERY far from our model points 11

D0 benchmarks

TABLE II: For each analysis, information on the signal for which it was optimized $(m_0, m_{1/2}, m_{\tilde{g}}, m_{\tilde{q}}, and nominal NLO cross$ section), signal efficiency, the number of events observed, the number of events expected from SM backgrounds, the numberof events expected from signal, and the 95% C.L. signal cross section upper limit. The first uncertainty is statistical and thesecond is systematic.

Analysis	$(m_0, m_{1/2})$	$(m_{\tilde{g}}, m_{\tilde{q}})$	σ_{nom}	€sig.	N_{obs} .	$N_{\rm backgrd.}$	N _{sig} .	σ_{95}
	(Gev)	(Gev)	(PD)	(%)				(PD)
"dijet"	(25, 175)	(439, 396)	0.072	$6.8 \pm 0.4^{+1.2}_{-1.2}$	11	$11.1 \pm 1.2^{+2.9}_{-2.3}$	$10.4 \pm 0.6^{+1.8}_{-1.8}$	0.075
"3-jets"	(197, 154)	(400, 400)	0.083	$6.8 \pm 0.4^{+1.4}_{-1.3}$	9	$10.7 \pm 0.9^{+3.1}_{-2.1}$	$12.0 \pm 0.7^{+2.5}_{-2.3}$	0.065
"gluino"	(500, 110)	(320, 551)	0.195	$4.1\pm0.3^{+0.8}_{-0.7}$	20	$17.7 \pm 1.1^{+5.5}_{-3.3}$	$17.0 \pm 1.2^{+3.3}_{-2.9}$	0.165

TABLE III: Definition of the analysis combinations, and number of events observed in the data and expected from the SM backgrounds.

Selection	"dijet"	"3-jets"	"gluino"	$N_{obs.}$	Nbackgrd.
Combination 1	yes	no	no	8	$9.4 \pm 1.2 \text{ (stat.)} \begin{array}{c} +2.3 \\ -1.8 \end{array} \text{ (syst.)}$
Combination 2	no	yes	no	2	$4.5 \pm 0.6 \text{ (stat.)} \stackrel{+0.7}{_{-0.5}} \text{ (syst.)}$
Combination 3	no	no	yes	14	$12.5 \pm 0.9 \text{ (stat.)} \stackrel{+3.6}{_{-1.9}} \text{ (syst.)}$
Combination 4	yes	yes	no	1	1.1 ± 0.3 (stat.) $^{+0.5}_{-0.3}$ (syst.)
Combination 5	yes	no	yes		kinematically not allowed
Combination 6	no	yes	yes	4	$4.5 \pm 0.6 \text{ (stat.)} \stackrel{+1.8}{_{-1.3}} \text{ (syst.)}$
Combination 7	yes	yes	yes	2	$0.6 \pm 0.2 \text{ (stat.)} ^{+0.1}_{-0.2} \text{ (syst.)}$
At least one selection				31	$32.6 \pm 1.7 \text{ (stat.) } ^{+9.0}_{-5.8} \text{ (syst.)}$

Combos of the 3 analyses

→ Feldman-Cousins 95% CL Signal limit: 8.34 events

SuSpect -> SUSY-Hit -> PROSPINO -> PYTHIA -> D0-tuned PGS4 fast simulation (to reproduce the benchmark points)... redo this analysis ~ 10⁵ times !

Tevatron II: CDF Tri-lepton Analysis

UDF R	CDF RUN II Preliminary $\int \mathcal{L}dt = 2.0$ fb ⁻² : Search for $\chi_1^-\chi_2^-$					
Channel	Signal	Background	Observed			
$_{3 tight}$	$2.25\pm0.13({\rm stat})\pm0.29({\rm syst})$	$0.49\pm0.04({\rm stat})\pm0.08({\rm syst})$	1			
2tight, 1 loose	$1.61\pm0.11({\rm stat})\pm0.21({\rm syst})$	$0.25\pm0.03({\rm stat})\pm0.03({\rm syst})$	0			
1tight,2loose	$0.68\pm0.07({\rm stat})\pm0.09({\rm syst})$	$0.14\pm0.02({\rm stat})\pm0.02({\rm syst})$	0			
m · 1 m · 1						
Total Trilepton	$4.5 \pm 0.2(\text{stat}) \pm 0.6(\text{syst})$	$0.88 \pm 0.05(\text{stat}) \pm 0.13(\text{syst})$	1			
Total Trilepton 2tight,1Track	$4.5 \pm 0.2(\text{stat}) \pm 0.6(\text{syst})$ $4.44 \pm 0.19(\text{stat}) \pm 0.58(\text{syst})$	$0.88 \pm 0.05(\text{stat}) \pm 0.13(\text{syst})$ $3.22 \pm 0.48(\text{stat}) \pm 0.53(\text{syst})$	1 4			
Total Trilepton 2tight,1Track 1tight,1loose,1Track	$\begin{array}{l} 4.5 \pm 0.2({\rm stat}) \pm 0.6({\rm syst}) \\ \\ 4.44 \pm 0.19({\rm stat}) \pm 0.58({\rm syst}) \\ \\ 2.42 \pm 0.14({\rm stat}) \pm 0.32({\rm syst}) \end{array}$	$\begin{array}{l} 0.88 \pm 0.05({\rm stat}) \pm 0.13({\rm syst}) \\ 3.22 \pm 0.48({\rm stat}) \pm 0.53({\rm syst}) \\ 2.28 \pm 0.47({\rm stat}) \pm 0.42({\rm syst}) \end{array}$	1 4 2			

We need to perform the 3 tight lepton analysis ~ 10⁵ times

Table 3: Number of expected signal and background events and number of observed events in 2 fb⁻¹. Uncertainties are statistical(stat) and full systematics(syst). The signal is for the benchmark point described in section 5.

We perform this analysis using CDF-tuned PGS4, PYTHIA in LO plus a PROSPINO K-factor

→ Feldman-Cousins 95% CL Signal limit: 4.65 events

 This is the first SUSY analysis to include these constraints
 The non-'3-tight' analyses are not reproducible w/o a better detector simulation

Tevatron III: D0 Stable Particle (= Chargino) Search

FIG. 2: The observed (dots) and expected (solid line) 95% cross section limits, the NLO production cross section (dashed line), and NLO cross section uncertainty (barely visible shaded band) as a function of (a) stau mass for stau pair production, (b) chargino mass for pair produced gaugino-like charginos, and (c) chargino mass for pair produced higgsino-like charginos.

Interpolation: $M_{\chi} > 206 |U_{1w}|^2 + 171 |U_{1h}|^2 \text{ GeV}$

This is a powerful constraint on our model set as we have many close mass chargino-neutralino pairs. This search cuts out a large parameter region as you will see later.

- No applicable bounds on charged sleptons..the cross sections are too small.
- This is the first SUSY analysis to include these constraints 14

Survival Rates

file	Description	Percent of Models Remaining
slha-okay.t×t	SuSpect generates SLHA file	99.99 %
error-okay.t×t	Spectrum tachyon, other error free	77.29%
lsp-okay.txt	LSP the lightest neutralino	32.70 %
deltaRho-okay.t×t	Δho	32.61 %
gMinus2-okay.txt	g-2	21.69 %
b2sGamma-okay.txt	$b ightarrow s \gamma$	6.17 %
Bs2MuMu-okay.t×t	$B ightarrow \mu \mu$	5.95 %
vacuum-okay.t×t	No CCB, potential not UFB	5.92 %
Bu2TauNu-okay.txt	B ightarrow au u	5.83 %
LEP-sparticle-okay.txt	LEP sfermion checks	4.72 %
invisibleWidth-okay.txt	Invisible Width of Z	4.71 %
susyhitProb-okay.txt	Heavy Higgs not problematic for SUSY-HIT	4.69 %
stableParticle-okay.txt	Tevatron stable chargino search	4.19 %
chargedHiggs-okay.t×t	LEP/ Tevatron charged Higgs search	4.19 %
neutralHiggs-okay.txt	LEP neutral Higgs search	1.73 %
directDetection-okay.txt	WIMP direct detection	1.55 %
omega-okay.t×t	Ωh^2	0.74 %
Bs2MuMu-2-okay.txt	$B ightarrow \mu \mu$	0.74 %
stableChargino-2-okay.txt	Tevatron stable chargino search	0.72 %
triLepton-okay.t×t	Tevatron trilepton	0.72 %
jetMissing-okay.txt	Tevatron jet plus missing	0.70 %
final-okay.txt	Final after cutting models with e.g. light stop, sbottoms	0.68 %

•Flat Priors : 10^7 models scanned , ~ 68.4 K (0.68%) survive

• Log Priors : 2x10⁶ models scanned , ~ 2.9 K (0.14%) survive

Gluino Can Be Light !!

Squarks Can Also Be Light

Light squarks can be missed by Tevatron searches for many reasons..

In some cases, but not exclusively, this can be due to the small splittings between the squarks and/or gluinos and other particles

in the decay chain or the LSP itself (or even due to the complete absence of MET)

This can lead to soft jets in the final state that have insufficient p_T to pass any Tevatron analysis cuts

The identity of the nLSP is a critical factor in looking for SUSY signatures..what can plays that role here????? Just about ANY of the 13 possibilities !

nLSP-LSP Mass Difference

ATLAS SUSY Analyses w/ a Large Model Set

• We have passed these models through the ATLAS inclusive analysis suite (@14 TeV), designed for mSUGRA, to explore its sensitivity to this far broader class of SUSY models

• We employed ATLAS SM backgrounds (Thanks!!!), their associated systematic errors #& their statistical criterion for SUSY 'discovery', etc. No data on background distributions are used in the analyses due to potentially large 'NLO' shape uncertainties.

• We first verified that we can **approximately** reproduce the ATLAS results for their benchmark mSUGRA models with our analysis techniques for each channel.

[#] We use the exact expressions for Z_n as given by ATLAS without any approximations ...causing 21 some numerical differences with the ATLAS CSC public results

• *But*, by necessity there are some differences between the two analyses (as we will soon see) so we shouldn't match *exactly*

• Matching to the ATLAS results without including the ATLAStuned fast detector simulation fails at the level we are working

• This analysis was extremely CPU intensive , e.g., PGS+ 6M Kfactors & 40M BF's to compute! ..another ~core-century of CPU

• Some problems did arise (associated w/ modifications to public codes to deal w/ more complicated SUSY spectra etc.) & have <u>mostly</u> been dealt with...but not yet <u>completely</u>.

• A drawback of this procedure is that we CANNOT modify cuts etc. to 'see what happens' as we are, by necessity, following ATLAS very closely. BUT we can make some suggestions.

ISASUGRA generates spectrum & sparticle decays

Partial NLO cross sections using PROSPINO & CTEQ6M

Herwig for fragmentation & hadronization

GEANT4 for full detector sim

SuSpect generates spectra with SUSY-HIT[#] for decays

NLO cross section for all 85 processes using PROSPINO** & CTEQ6.6M

PYTHIA for fragmentation & hadronization

PGS4-ATLAS for fast detector simulation

** version w/ negative K-factor errors corrected

[#] version w/o negative QCD corrections, with 1st & 2nd generation fermion masses & other very numerous PS fixes included. e.g., explicit small ∆m chargino decays, etc.

The set of inclusive ATLAS analyses is large:

- ≥(2,4)-jet +MET
- 1I+≥(2,3,4)-jet +MET

- τ +≥ 4j +MET
- ≥4j w/ ≥ 2btags + MET

• SSDL

•(stable particle search)

- OSDL
- Trileptons + (≥1-j,X)+MET

Benchmark Tests: Us vs Them Part I

Meff distribution for 4-jet, 0 lepton analysis

Benchmark Tests: Us vs Them Part II

Meff distribution for 2-jet, 0 lepton analysis

Benchmark Tests: Us vs Them Part III

Meff distribution for 1 lepton analysis

Benchmark Tests: Us vs Them Part IV

Missing Energy (GeV)

Benchmark Tests: Us vs Them Part V

M_{eff} distribution for tau analysis

Benchmark Tests: Us vs Them Part VI

Meff distribution for b-jet analysis

Comments

• Although we reproduced the ATLAS τ analysis we should be skeptical of PGS4 as it has a rather low efficiency & a high fake rate for τ 's (which we studied in some detail in our analysis) although these approximately compensate for the benchmark points! This may lead to this analysis being less successful at finding SUSY than the results below would indicate.

 Hopefully you are convinced that we did a respectable job at 'reproducing' all of the ATLAS benchmarks points for the various channels given the analysis differences

• We now turn to our model set results...One of our problems is the vast amount of information that we have generated. First, some general results...

ATLAS 1fb ⁻¹ Backgrounds & 'Target' Signal Counts

ANALYSIS	BACKGROUND	<u>S=5, δB=50%</u>	<u>δB=20%</u>
4j0l	709	1759	721
2j0l	1206	2778	1129
4j1l	41.6	121	62
3j1l	7.2	44	28
2j1l	18.2	61	36
OSDL	84.7	230	108
SSDL	2.3	17	13
3l1j	12	44	28
3lm	72.5	198	94
τ	51	144	72
b	69	178	86

Background systematics are particularly important for both the 4j0l & 2j0l channels .. but somewhat less so for the others:

Required number of signal events for observation with S=5

 N_s required to get 5σ discovery

What fraction of models are 'seen' by any of these analyses assuming an integrated luminosity of **1** fb⁻¹ ?

Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
4j0l	59537 (88.962 %)	59978 (87.708 %)
2j0l	58719 (87.74 %)	59208 (86.582 %)
1l4j	28560 (42.675 %)	28624 (41.858 %)
1l3j	45228 (67.581 %)	45405 (66.397 %)
1l2j	47011 (70.245 %)	47226 (69.06 %)
OSDL	7360 (10.998 %)	7364 (10.769 %)
SSDL	14280 (21.338 %)	14289 (20.895 %)
3lj	9139 (13.656 %)	9149 (13.379 %)
3lm	1843 (2.7539 %)	1847 (2.7009 %)
tau	57088 (85.303 %)	57483 (84.059 %)
b	49760 (74.353 %)	50113 (73.282 %)

Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
4j0l	1400 (48.376 %)	1401 (48.194 %)
2j0l	1380 (47.685 %)	1383 (47.575 %)
1l4j	530 (18.314 %)	530 (18.232 %)
1l3j	1136 (39.254 %)	1136 (39.078 %)
1l2j	1166 (40.29 %)	1167 (40.144 %)
OSDL	201 (6.9454 %)	201 (6.9143 %)
SSDL	362 (12.509 %)	362 (12.453 %)
3lj	257 (8.8804 %)	257 (8.8407 %)
3lm	85 (2.9371 %)	85 (2.924 %)
tau	1306 (45.128 %)	1307 (44.96 %)
b	1218 (42.087 %)	1219 (41.933 %)

FLAT

A PYSTOP occurs for a model when PYTHIA cannot properly treat the hadronization in at least one of the decay chains it encounters..there many thousands of different decay chains₃₅ for every model

What fraction of models are 'seen' by any of these analyses assuming an integrated luminosity of 10 fb⁻¹ ?

	Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
\bigstar	4j0l	59682 (89.179 %)	60125 (87.923 %)
\bigstar	2j0l	58806 (87.87 %)	59296 (86.71 %)
	1l4j	30565 (45.671 %)	30638 (44.803 %)
	1l3j	49636 (74.168 %)	49878 (72.938 %)
	1l2j	49854 (74.493 %)	50108 (73.274 %)
	OSDL	7957 (11.89 %)	7961 (11.642 %)
\star	SSDL	21487 (32.107 %)	21531 (31.485 %)
\star	3lj	11702 (17.486 %)	11714 (17.13 %)
	3lm	1953 (2.9182 %)	1958 (2.8632 %)
	tau	58931 (88.057 %)	59348 (86.786 %)
	b	51782 (77.374 %)	52147 (76.256 %)

Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
4j0l	1404 (48.514 %)	1405 (48.332 %)
2j0l	1382 (47.754 %)	1385 (47.644 %)
1l4j	579 (20.007 %)	579 (19.917 %)
1l3j	1395 (48.203 %)	1396 (48.022 %)
1l2j	1317 (45.508 %)	1318 (45.339 %)
OSDL	209 (7.2218 %)	209 (7.1895 %)
SSDL	578 (19.972 %)	578 (19.883 %)
3lj	327 (11.299 %)	327 (11.249 %)
3lm	87 (3.0062 %)	87 (2.9928 %)
tau	1369 (47.305 %)	1370 (47.128 %)
b	1261 (43.573 %)	1262 (43.412 %)

FLAT

Clearly, increasing the luminosity DOES help in many cases... especially those with low backgrounds. The most interesting cases will be when it doesn't! 36
These results have some similarities to what ATLAS finds for the mSUGRA case but with some important differences:

- For mSUGRA, ATLAS finds somewhat comparable power in 4j0l & 4j1l analyses for both high & low tan β ...but not us
- For us, OSDL are less powerful than in the mSUGRA case

- For us the 4j0l & 2j0l searches give very comparable coverage but not so for the mSUGRA case. Note that <1 TeV gluinos are essentially never missed in mSUGRA
- For mSUGRA comparable reaches are found for (4,3,2)j11 searches..not so for us.

The number of models 'found' by n different analyses

# passed	# models no pystop	# models incl. pystops	# models nopy no tau
0	240 (0.35862%)	1135 (1.6597 %)	389 (0.58126%)
1	751 (1.1222 %)	812 (1.1874 %)	957 (1.43 %)
2	2110 (3.1528 %)	2168 (3.1703 %)	8561 (12.792 %)
3	8232 (12.301 %)	8334 (12.187 %)	12055 (18.013 %)
4	12416 (18.552 %)	12608 (18.437 %)	6953 (10.389 %)
5	6962 (10.403 %)	7019 (10.264 %)	12697 (18.972 %)
6	11970 (17.886 %)	12022 (17.58 %)	12290 (18.364 %)
7	11890 (17.766 %)	11925 (17.438 %)	6358 (9.5003 %)
8	6033 (9.0147 %)	6038 (8.8296 %)	3138 (4.6889 %)
9	2898 (4.3303 %)	2900 (4.2408 %)	2714 (4.0553 %)
10	2654 (3.9657 %)	2655 (3.8825 %)	812 (1.2133 %)
11	768 (1.1476 %)	768 (1.1231 %)	0 (0 %)

LOG

FLAT

# passed	# models no pystop	# models incl. pystops	# models nopy no tau
0	866 (29.924 %)	876 (30.134 %)	887 (30.65 %)
1	182 (6.2889 %)	184 (6.3295 %)	181 (6.2543 %)
2	264 (9.1223 %)	264 (9.0815 %)	442 (15.273 %)
3	317 (10.954 %)	317 (10.905 %)	482 (16.655 %)
4	445 (15.377 %)	445 (15.308 %)	205 (7.0836 %)
5	180 (6.2198 %)	181 (6.2264 %)	262 (9.0532 %)
6	240 (8.293 %)	240 (8.2559 %)	187 (6.4616 %)
7	164 (5.6669 %)	164 (5.6416 %)	107 (3.6973 %)
8	103 (3.5591 %)	103 (3.5432 %)	68 (2.3497 %)
9	63 (2.1769 %)	63 (2.1672 %)	51 (1.7623 %)
10	49 (1.6932 %)	49 (1.6856 %)	22 (0.76019%)
11	21 (0.72564%)	21 (0.72239%)	0 (0 %)

The number of models 'found' by n different analyses

FLAT

LOG

10 fb ⁻¹

More lumi clearly helps ..

# passed	# models no pystop	# models incl. pystops	# models nopy no tau
0	177 (0.26448%)	1050 (1.5354 %)	286 (0.42735%)
1	565 (0.84424%)	625 (0.91396%)	756 (1.1296 %)
2	1521 (2.2727 %)	1581 (2.3119 %)	6795 (10.153 %)
3	6697 (10.007 %)	6803 (9.9482 %)	10199 (15.24 %)
4	10348 (15.462 %)	10515 (15.376 %)	6688 (9.9934 %)
5	6929 (10.354 %)	6996 (10.23 %)	13714 (20.492 %)
6	13165 (19.672 %)	13235 (19.354 %)	10347 (15.461 %)
7	10140 (15.152 %)	10176 (14.881 %)	9477 (14.161 %)
8	9088 (13.58 %)	9104 (13.313 %)	4146 (6.1951 %)
9	3885 (5.8051 %)	3888 (5.6855 %)	3590 (5.3643 %)
10	3518 (5.2567 %)	3519 (5.1459 %)	926 (1.3837 %)
11	891 (1.3314 %)	892 (1.3044 %)	0 (0 %)

# passed	# models no pystop	# models incl. pystops	# models nopy no tau
0	741 (25.605 %)	751 (25.834 %)	762 (26.33 %)
1	180 (6.2198 %)	182 (6.2607 %)	185 (6.3925 %)
2	288 (9.9516 %)	288 (9.9071 %)	447 (15.446 %)
3	315 (10.885 %)	315 (10.836 %)	458 (15.826 %)
4	423 (14.616 %)	423 (14.551 %)	232 (8.0166 %)
5	209 (7.2218 %)	209 (7.1895 %)	306 (10.574 %)
6	271 (9.3642 %)	272 (9.3567 %)	185 (6.3925 %)
7	167 (5.7706 %)	167 (5.7448 %)	153 (5.2868 %)
8	141 (4.8721 %)	141 (4.8504 %)	76 (2.6261 %)
9	72 (2.4879 %)	72 (2.4768 %)	61 (2.1078 %)
10	58 (2.0041 %)	58 (1.9952 %)	29 (1.0021 %)
11	29 (1.0021 %)	29 (0.99759%)	0 (0 %)

Why Do Models Get Missed by ATLAS?

This is not possible to answer universally but there are some obvious causes...sometimes the signal rate is just too small & sometimes the background <u>uncertainties</u> are too large...but these are not the only reasons. The other reasons are more interesting.

Let's first look at the 2j/4j+MET analyses as examples since they generally have the best reach in the mSUGRA/CMSSM context & here as well.

(Sometimes useful info can come from analyzing the multiple signal sources for the various analysis final states)

Missed Models: Is it 'just the mass' ??

Here we see the significances for the 4j0l search...there IS a GENERAL reduction in S as the gluino mass increases. BUT we also see that there is quite a spread in significance at any fixed value of the mass by > an order of magnitude.

The 2j0l results are similar & increasing the lumi to 10 fb⁻¹ in either case will only raise the overall significance distribution very slightly

Search Significance Correlations : Dependence on the Lightest Squark Mass

As the lightest of the u,d-squarks get heavier one might expect a qualitative fall off in the signal significance in the 2j0l &4j0l searches... here we see that this correlation is rather weak.

Lightest Squark Mass vs. Gluino Mass

Some models w/ light squarks & gluinos ARE missed here & adding lumi does not necessarily help much in all cases

The same holds true for the 2j0l analysis

Example: Model 53105

Heavier squarks essentially decay into gluinos + jets & then...

gluino(282.8) $\rightarrow \widetilde{d}_R$ (201.7) j	100%	∆m =81.1 GeV
$\widetilde{d}_{R}(201.7) \rightarrow ~\widetilde{\chi}_{2}{}^{0}(193.8)~j$	97%	∆m =7.9 GeV
$\widetilde{\chi}_{2}{}^{0}$ (193.8) $\rightarrow ~\widetilde{I}_{R}{}^{\pm}$ (163.9) I	100%	∆m =30.0 GeV
$T_{R^{\pm}}(163.9) \rightarrow I^{\pm} + MET(152.5)$	100%	∆m =11.4 GeV

Model fails ATLAS (4,2)j0l cuts due to the presence of leptoms!

Mass splittings leading to soft jets can be quite important.. but that's not all of it either :

What about the other channels ??

• In the case of (2,4)j1l searches we can ask whether the model fails the ATLAS searches due to the 'hadronic' or the 'leptonic' parts of the cuts...

Cut Effectiveness: I (after M_{eff} cut)

Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
4j0l_1: 4 hard jets	66745 (99.733 %)	67289 (98.399 %)
4j0l_2: $E_{\text{miss}}^T > 0.2 M_{\text{eff}}$	66036 (98.673 %)	66556 (97.327 %)
4j0l_3: trans. sph.	63615 (95.056 %)	64071 (93.693 %)
4j0l_4: jets not near E^T_{\mathrm{miss}}	62857 (93.923 %)	63306 (92.574 %)
4j0l_5: no lepton	59537 (88.962 %)	59978 (87.708 %)
2j0l_1: 2 hard jets	66610 (99.531 %)	67173 (98.229 %)
2j0l_2: $E_{\rm miss}^T > 0.3 M_{\rm eff}$	63573 (94.993 %)	64089 (93.719 %)
2j0l_3: jets not near E^T_{\mathrm{miss}}	63062 (94.229 %)	63568 (92.957 %)
2j0l_4: no lepton	58719 (87.74 %)	59208 (86.582 %)
1l4j_1: one isolated lepton	57665 (86.165 %)	58037 (84.869 %)
1l4j_2: no additional leptons	57374 (85.73 %)	57739 (84.433 %)
1l4j_3: four hard jets	47585 (71.103 %)	47777 (69.866 %)
1l4j_4: $E_{\text{miss}}^T > 0.2 M_{\text{eff}}$ and $E_{\text{miss}}^T > 100$	41798 (62.456 %)	41930 (61.316 %)
1l4j_5: trans. sph.	36400 (54.39 %)	36489 (53.359 %)
$1l4j_6: M_T > 100$	28560 (42.675 %)	28624 (41.858 %)
1l3j_1: one isolated lepton	66813 (99.834 %)	67917 (99.317 %)
1l3j_2: no additional leptons	66804 (99.821 %)	67902 (99.295 %)
1l3j_3: three hard jets	60755 (90.782 %)	61204 (89.5 %)
1l3j_4: $E_{\rm miss}^T > 0.25 M_{\rm eff}$ and $E_{\rm miss}^T > 100$	54449 (81.359 %)	54763 (80.082 %)
1l3j_5: trans. sph.	51457 (76.889 %)	51714 (75.623 %)
1l3j_6: $M_T > 100$	45228 (67.581 %)	45405 (66.397 %)

flat

1 fb⁻¹

Cut Effectiveness: II

1l2j_1: one isolated lepton	66271 (99.024 %)	67208 (98.28 %)
1l2j_2: no additional leptons	66233 (98.967 %)	67155 (98.203 %)
1l2j_3: two hard jets	62773 (93.797 %)	63329 (92.608 %)
112j_4: $E_{\text{miss}}^T > 0.3 M_{\text{eff}}$ and $E_{\text{miss}}^T > 100$	57237 (85.525 %)	57616 (84.254 %)
1l2j_5: trans. sph.	53403 (79.796 %)	53696 (78.521 %)
1l2j_6: $M_T > 100$	47011 (70.245 %)	47226 (69.06 %)
OSDL_1: OSDL	33406 (49.916 %)	33513 (49.007 %)
OSDL_2: four hard jets	11993 (17.92 %)	12003 (17.552 %)
OSDL_3: $E_{\rm miss}^T > 0.2 M_{\rm eff}$ and $E_{\rm miss}^T > 100$	9916 (14.817 %)	9922 (14.509 %)
OSDL_4: trans. sph.	7360 (10.998 %)	7364 (10.769 %)
SSDL_1: SSDL	26800 (40.045 %)	26876 (39.302 %)
SSDL_2: four hard jets	14281 (21.339 %)	14290 (20.897 %)
SSDL_3: $E_{\text{miss}}^T > 100$	14280 (21.338 %)	14289 (20.895 %)
SSDL_4: $E_{\text{miss}}^T > 0.2 M_{\text{eff}}$	14280 (21.338 %)	14289 (20.895 %)
3lj_1: at least three leptons	16310 (24.371 %)	16345 (23.902 %)
3lj_2: at least one hard (200 GeV) jet	9139 (13.656 %)	9149 (13.379 %)
3lm_1: at least three leptons	5128 (7.6624 %)	5140 (7.5164 %)
3lm_2: at least one OSSF pair with $M>20{\rm GeV}$	4460 (6.6643 %)	4471 (6.5381 %)
3lm_3: lepton track isolation	4460 (6.6643 %)	4471 (6.5381 %)
$3lm_4: E_{miss}^T > 30$	4306 (6.4342 %)	4315 (6.31 %)
3lm_5: $M < M_Z$ for any OSSF pair	1843 (2.7539 %)	1847 (2.7009 %)

Cut Effectiveness: III

tau_1: four hard jets	66900 (99.964 %)	67568 (98.807 %)
tau_2: $E_{\text{miss}}^T > 100$	66895 (99.957 %)	67524 (98.742 %)
<pre>tau_3: jets not near E^T_{\mathrm{miss}}</pre>	66883 (99.939 %)	67498 (98.704 %)
tau_4: no lepton	66780 (99.785 %)	67379 (98.53 %)
tau_5: at least one tau	64358 (96.166 %)	64839 (94.816 %)
tau_6: $E_{\rm miss}^T > 0.2 M_{\rm eff}$	61618 (92.072 %)	62061 (90.754 %)
tau_7: $M_T > 100$ (of hardest tau and $E_{ m miss}^T$)	57088 (85.303 %)	57483 (84.059 %)
b_1: 4 hard jets with $p_T > 50$ GeV	66923 (99.999 %)	67893 (99.282 %)
b_2: leading jet with $p_T > 100$ GeV	66923 (99.999 %)	67892 (99.281 %)
b_3: $E_{\text{miss}}^T > 100 \text{ GeV}$	66923 (99.999 %)	67841 (99.206 %)
b_4: $E_{\rm miss}^T > 0.2 M_{\rm eff}$	66923 (99.999 %)	67775 (99.109 %)
b_5: trans sph.	66923 (99.999 %)	67669 (98.954 %)
b_6: at least 2 b-tags	49760 (74.353 %)	50113 (73.282 %)

Reducing Systematics: $50\% \rightarrow 20\%$

L(fb ⁻¹)	1	10	1	10
Analysis	50	50h	20	20h
4j0l	88.962	89.179	99.009	99.093
2j0l	87.74	87.87	98.676	98.754
114j	42.675	45.671	57.968	64.074
113j	67.58	74.168	72.967	84.116
112j	70.244	74.493	79.399	86.972
OSDL	10.997	11.89	23.272	27.446
SSDL	21.337	32.107	25.161	39.138
3lj	13.656	17.486	19.386	28.857
3lm	2.7538	2.9182	4.916	5.8947
tau	85.303	88.057	97.139	98.657
Ъ	74.352	77.374	91.915	94.97

FLAT

This would be a very significant improvement in reach! 54

Reducing Systematics: $50\% \rightarrow 20\%$ (cont.)

Number of analyses	Flat	Flat high- ${\cal L}$	Log	$\operatorname{Log}\operatorname{high}\mathcal{L}$
0	0.032873	0.025402	17.726	12.025
1	0.071722	0.046321	5.4596	4.9067
2	0.51999	0.20322	7.8093	7.0145
3	4.3302	2.2742	9.3642	7.9475
4	16.018	9.6976	16.966	14.824
5	7.7833	5.9306	7.8438	8.1894
6	14.044	17.512	8.7768	13.407
7	26.452	21.287	10.815	9.8825
8	10.361	14.058	5.5287	7.9475
9	6.9391	8.6217	3.4554	4.8376
10	9.9768	15.67	3.9046	5.8051
11	3.471	4.674	2.3497	3.2135

Sample Failure Analyses

Signals depend on what squarks do with the highly compressed gaugino spectrum. (Note $\chi^{\pm} \rightarrow LSP+W^* \text{ w/ } \Delta m=11.7 \text{ GeV}$)

•B(s→j + MET) ~0.11-0.37 → (4,2)j0l rates which are too small •B(s→j + $\chi_{2,3}^{0}$) ~ 0.07-0.68 → ~soft τ 's + MET as only staus are accessible (NO sleptons!)→ few (B~0.35) soft leptons from tau decays

•B(s \rightarrow j + χ_1^{\pm}) ~ 0-0.57 \rightarrow soft jets/leptons + MET

However: Model 56838

is quite similar...BUT.. this model is FOUND !

comparable production σ 's

 \rightarrow gg \rightarrow ss+2j , gs \rightarrow ss+j

There are more decays of gluinos to sbottoms here. Signals again depend on what squarks do with the compressed gaugino spectrum. They have BFs to charginos & neutralinos comparable to Model 949.

• However, $\chi_{2,3}^0$ now will decay quite differently with reasonable BFs into final states with significant light leptons !

• 56838 is seen in both the (2,3)j1l analyses

- $q_L \rightarrow j + \chi_1^0$ (17%), χ_1^{\pm} (35%), gluino (46%)
- $u_R \rightarrow j + \chi_2^0$ (18%), gluino (81%); gluino $\rightarrow j + d_R$

• $d_R \rightarrow j + \chi_2^0$; $\chi_2^0 \rightarrow \chi_1^{\pm} + W$ the chargino is 'stable'

 Most of the decays end up as stable charginos so there is very little MET although there are many jets. No leptons or τ's & few b's

- $d_R \rightarrow j + \chi_2^0$ (2%), gluino (98%);
- gluino \rightarrow j+ u_R (50%), (u,d)_L (28%)
- $u_{L} \rightarrow j + \chi_{1}^{0} (33\%), \ \chi_{1}^{\pm} (67\%); \quad d_{L} \rightarrow j + \chi_{1}^{0} (34\%), \ \chi_{1}^{\pm} (66\%);$
- $u_R \rightarrow j + \chi_1^0$; χ_1^{\pm} is detector stable ($c\tau \sim 35m$)
- Long-lived searches in cascades are important !

- $u_R \rightarrow j + \chi_1^0$ (3%), χ_3^0 (22%), gluino (75%)
- gluino \rightarrow j+ d_R (23%) , (u,d)_L (76%)
- $u_{L} \rightarrow j + \chi_{1}^{0} (12\%), \ \chi_{1}^{\pm} (87\%); \quad d_{L} \rightarrow j + \chi_{1}^{0} (66\%), \ \chi_{1}^{\pm} (32\%);$
- $d_R \rightarrow j + \chi_1^0 (81\%), \ \chi_3^0 (18\%); \ \chi_3^0 \rightarrow h \chi_1^0 (21\%), \ W \chi_1^{\pm} (60\%)$
- $\chi_1^{\pm} \to W^* \chi_1^0$ ($\Delta m \sim 10.4 \text{ GeV}$)

Note the compressed spectrum here leading to softer jets

- $u_R(867) \rightarrow j + gluino(763); gluino \rightarrow j + d_R(74\%), (u,d)_L(7\%)$
- $u_{L}(734) \rightarrow j + \chi_{1}^{0}(27\%), \chi_{1}^{\pm}(67\%)$ [581,584];
- $d_{L}(738) \rightarrow j + \chi_{1}^{0}(33\%), \chi_{1}^{\pm}(57\%);$
- $d_R \rightarrow j + \chi_1^0$; $\chi_1^{\pm} \rightarrow W^* \chi_1^0$ ($\Delta m \sim 3.8 \text{ GeV}$)

Note: $Z_n \sim 4.2$ for (2,4) j0l analyses

Signals: all squarks decay almost exclusively (~90%) to gluinos, with (~3%) to j + LSP & (~6%) to j + chargino. The squark-gluino mass splittings are in excess of 100 GeV. These generate a smallish 2j0l signal after cuts. $Z_n \sim 4.4$ in 2j0l

• The gluinos are nearly degenerate with the LSP , e.g., $\Delta m=12.6$ GeV, so their decays to jj+LSP or 'detector stable' charginos are too soft to populate 4j0l . Note that there are no significant sources of leptons, b's or τ 's here. Stable particle searches₆ are important in this case .

How often do these 'famous' decay chains actually occur??

It appears that this is not GENERALLY a common mode

Gluino initiated cascades leading to XI⁺I⁻ MET

uass C 0.1 Inclusive 0.01 **Branching** fraction 0.001 0.0001 1e-05 1**e**-06 2 3 5 0 4 6 7 BF-weighted number of steps in decay chain

Stable SUSY Searches at LHC

Long Lived/Stable Sparticles in the 71k Sample with $c\tau > 20m$

 \rightarrow 9462 (97,1) models w/ one (2,3) long-lived particle(s) !

- 8982 are lightest charginos
- 20 are second neutralinos
- 338 are sbottom_1's
- 179 are stau_1's
- 61 are stops
- 5 are gluinos
- 49 are c_R 7
- 17 are μ_R
 - NB: 4-body & CKM suppressed loop decays, 8 are $c_1 \\ \exists e.g., \vec{b}_1 \rightarrow b^* (s,d) + LSP$ are missing, i.e., when $\Delta m < m_{bottom}$ from SUSY-HIT etc. 67

Particles with $c\tau > 20m$ will be declared 'detector stable' in our analysis

 $\tilde{b}_1 \rightarrow s,d + LSP$ induced decay lengths for $\Delta m < m_b$

ст (cm)

Example: Long-Lived Charginos

ст (m)

Example: Detector Decaying Stops

Example: Long-Lived χ_2^0 s

ст (m)

What Next?

- Obtain & understand more of the numerous 'details' of the 14 TeV case. We have an *enormous* volume of data to look at...
- Examine the 7 TeV case... BUT not yet! While we have the ATLAS background data for 10 TeV, the 7 TeV results are not yet available as they are currently being generated. It would be nice to do this study soon !
- It may be interesting to do a similar analysis to this for other SUSY setups, e.g., the case of the gravitino LSP or...
- Dark matter analyses are ongoing(e.g., Ice Cube)
Summary

- The pMSSM has a far richer phenomenology than any of the conventional SUSY breaking scenarios. The sparticle properties can be vastly different, e.g., the nLSP can be any other sparticle!
- Light partners can exist which have avoided LEP & Tevatron constraints and may also be difficult to observe at the LHC due to small mass differences or squirky spectra
- Substantial SM background systematics, compressed mass spectra & processes with low signal rates due to unusual decays lead to models being missed by the inclusive analyses.
- Long-lived particle searches (in cascades!) are important.
- The study of the complexities of these models is ongoing. ⁷³

BACKUP SLIDES

Significance Gain

Significance Gain

What processes produce the ≥4j/2j+MET events ???

No. of models

Benchmark Model Process Cross Sections

4 jet, 0 lepton analysis

- 1. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV; and $E_T^{\rm miss} > 100$ GeV
- 2. $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$
- 3. Transverse sphericity $S_T > 0.2$
- 4. $\Delta\phi$ between each of three hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 5. Reject events with an electron or muon.

3 jet, 0 lepton analysis

- 1. At least three jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV; and $E_T^{\rm miss} > 100$ GeV
- 2. $E_T^{\text{miss}} > 0.25 M_{\text{eff}}$
- 3. $\Delta\phi$ between each of three hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 4. Reject events with an electron or muon.

2 jet, 0 lepton analysis

- 1. At least two jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV; and $E_T^{\rm miss} > 100$ GeV
- 2. $E_T^{\text{miss}} > 0.3 M_{\text{eff}}$
- 3. $\Delta\phi$ between each of two hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 4. Reject events with an electron or muon.

One lepton, 4 jet analysis

- 1. Exactly one isolated electron or muon.
- No additional leptons with p_T > 10 GeV.
- 3. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- 4. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$
- 5. Transverse sphericity $S_T > 0.2$
- Tranverse mass M_T > 100 GeV
- Reject events with an electron or muon.

One lepton, 3 jet analysis

- 1. Exactly one isolated electron or muon.
- No additional leptons with p_T > 10 GeV.
- 3. At least three jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV
- 4. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.25 M_{\text{eff}}$
- 5. Transverse sphericity $S_T > 0.2$
- Tranverse mass M_T > 100 GeV
- Reject events with an electron or muon.

One lepton, 2 jet analysis

- 1. Exactly one isolated electron or muon.
- 2. No additional leptons with $p_T > 10$ GeV.
- 3. At least two jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV
- 4. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.3 M_{\text{eff}}$
- 5. Transverse sphericity $S_T > 0.2$
- Tranverse mass M_T > 100 GeV
- Reject events with an electron or muon.

OSDL analysis

- 1. Two opposite-sign leptons with $p_T > 10$ GeV and $|\eta| < 2.5$; no additional leptons
- 2. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- 3. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$
- 4. Transverse sphericity $S_T > 0.2$

SSDL analysis

- 1. Exactly two same-sign leptons with $p_T > 20$ GeV
- 2. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- $E_T^{miss} > 100 \text{ GeV}$
- 4. $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$

Trilepton + jet analysis

- At least three leptons with p_T > 10 GeV
- At least one jet with p_T > 200 GeV

Trilepton + E_T^{miss} analysis

- 1. At least three leptons with $p_T > 10$ GeV
- 2. At least one OSSF dilepton pair with M > 20 GeV
- 3. Lepton track isolation: less than 1 (2) GeV maximum P_T of any track within $\Delta R < 0.2$ of a muon (electron). 4. $E_T^{\text{miss}} > 30 \text{ GeV}$
- 5. $M < M_Z 10$ GeV for any OSSF dilepton pair

τ analysis

- 1. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- $E_T^{\text{miss}} > 100 \text{ GeV}$
- 3. $\Delta\phi$ between each of three hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 4. Reject events with an electron or muon.
- 5. At least one $_{T}$ with $p_{T}>40$ GeV and $|\eta|<2.5$

```
6. E_T^{\text{miss}} > 0.2 M_{\text{eff}}
```

7. Tranverse mass $M_T > 100$ GeV, using the hardest $_{ au}$ and $E_T^{
m miss}$

b -jet analysis

- 1. At least four jets with $p_T > 50$ GeV
- 2. at least one of which must have $p_T > 100$ GeV

```
3. E_T^{\text{miss}} > 100 \text{ GeV}
```

4.
$$E_T^{\text{miss}} > 0.2 M_{\text{eff}}$$

- 5. Transverse sphericity $S_T > 0.2$
- 6. At least two jets tagged as b -jets

ATLAS Significance Calculation

$$Z_n = \sqrt{2} \operatorname{erf}^{-1}(1 - 2p) , \qquad (2)$$

where p is the probability that the background could have fluctuated by chance to the measured # of events $N_{data} = N_{signal} + N_b$ or above, and is given by

$$p = A \int_0^\infty db \, G(b; N_b, \delta N_b) \sum_{i=N_{\text{data}}}^\infty \frac{e^{-b} b^i}{i!} , \qquad (3)$$

where G is a Gaussian with mean N_b and width δN_b evaluated at b, and δN_b is the systematic error on the number of background events. A is a normalization factor that ensures that the probability that the background could have fluctuated to any positive value is 1.

$$A = \left[\int_0^\infty db \, G(b; N_b, \delta N_b) \sum_{i=0}^\infty \frac{e^{-b} b^i}{i!} \right]^{-1} = \left[0.5 \operatorname{erf} \left(N_b / (\sqrt{2} \, \delta N_b) \right) \right]^{-1} \,. \tag{4}$$

This formula can be implemented numerically, and then the results can be compared to those quoted by ATLAS. ATLAS claims to use a fractional systematic error of 0.2 for electroweak backgrounds, and 0.5 for QCD backgrounds. We thus use a total systematic background error given by

$$\delta N_b = \sqrt{\left(a_{\rm QCD} N_b^{\rm QCD}\right)^2 + \left(a_{\rm EW} N_b^{\rm EW}\right)^2} \ . \tag{5}$$

Light Higgs Mass Predictions

LEP Higgs mass constraints avoided by either reducing the ZZh coupling and/or reducing the, e.g., $h \rightarrow \overline{b}b$ branching fraction by decays to LSP pairs. We have both of these cases in our final model sets. 85

Predictions for $\Delta(g-2)_{\mu}$

flat

log

Distribution of Sparticle Masses By Species

Distribution of Sparticle Masses By Species

Flat Priors

Log Priors

Distribution of Sparticle Masses By Species

'Fine-Tuning' or Naturalness Criterion

We find that small values of `fine-tuning' are very common !

ATLAS has already made use of some of these models!

ATLAS NOTE

ATL-PUB-2009-XXX

July 20, 2009

Prospects for Supersymmetry and Univeral Extra Dimensions discovery based on inclusive searches at a 10 TeV centre-of-mass energy with the ATLAS detector

The ATLAS collaboration.

Abstract

This note presents an evaluation of the discovery potential of Supersymmetry and Universal Extra Dimensions for channels with jets, leptons and missing transverse energy. The LHC running scenario at a centre-of-mass energy of 10 TeV, delivering an integrated luminosity of 200 pb⁻¹ for the 2009-2010 run is investigated.

LSP Mass Versus LSP-nLSP Mass Splitting

Contribution to 4jul Analysis from various processes for LOG model set

Percent of events from process

LSP Identity

Many models have LSPs which are close to the weak interaction eigenstates...

..e.g., for the flat case:

LSP Type	Definition	Percent of Models
Bino	$ Z_{11} ^2 > 0.95$	13.94
Mostly Bino	$0.8 < Z_{11} ^2 \le 0.95$	3.10
Wino	$ Z_{12} ^2 > 0.95$	14.16
Mostly Wino	$0.8 < Z_{12} ^2 \le 0.95$	9.14
Higgsino	$ Z_{13} ^2 + Z_{14} ^2 > 0.95$	32.19
Mostly Higgsino	$0.8 < Z_{13} ^2 + Z_{14} ^2 \le 0.95$	12.38
All other models		15.09

There is an even weaker correlation between small mass splittings for the squarks

