A coLinux/Condor Computer Cluster at the University of South Alabama

C. M. Jenkins

Department of Physics
University of South Alabama

Horst Severini

Homer L. Dodge Department of Physics & Astronomy
The University of Oklahoma

Joshua Alexander and Henry Neeman

OU Supercomputing Center for Education and Research (OSCER)

The University of Oklahoma

Chris Franklin

OU Information Technology The University of Oklahoma

Representing Distributed Organization for Scientific and Academic Research (DOSAR)

This work funded in part by DoE grant DE-FG02-96ER40970

DOSAR

- Distributed Organization for Scientific and Academic Research.
- http://www.dosar.org
- "A 'grass-roots' grid organization that focuses on community and campus grids and promotes a wide range of interdisciplinary and educational activities within the organization and member institutions."
- Member institutions:
- Iowa State University
- University of Johannesburg
- Langston University
- Louisiana State University (CCT)
- Louisiana Tech University
- University of Mississippi

- University of Oklahoma
- Universidade Estadual Paulista (UNESP) (SPRACE GridUNESP)
- University of South Alabama
- Susquehanna University
- University of Texas at Arlington

Condor

- A project that supports high throughput computing
 - http://www.cs.wisc.edu/condor
 - Open source software: condor
- A condor cluster:
 - Condor central manager
 - Monitor the condor cluster
 - Submit jobs to the condor worker machines
 - Monitor/manage jobs running on the cluster
 - Condor worker machines (many machines)
 - Accept and execute jobs from the condor central manager
 - Return results back to the condor central manager after job completion

coLinux

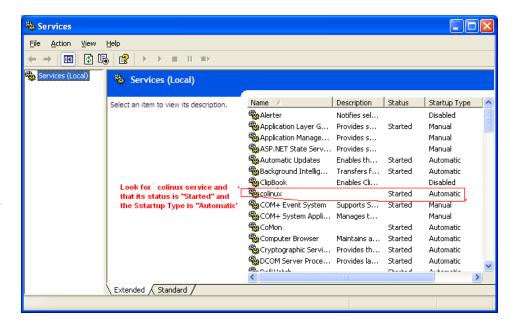
- Cooperative Linux
 - http://www.colinux.org
 - Open source software
 - A native port of the Linux kernel to Windows
 - Runs on top of Windows OS
 - Allows the user to run linux operating system

coLinux/Condor Package

- Developed by OU Supercomputing Center for Education & Research (OSCER) and the University of Nebraska.
 - http://www.oscer.ou.edu
- The package allows the user to setup a linux operating system on a Windows OS machine that runs the condor program.
- The objective is to allow the Windows PC's to become worker nodes in a condor cluster.
- Use Windows-based PC's in student computer labs.
- Harvest idle CPU cycles late at night when machines are not used.

Local Platforms for the USA coLinux/Condor Cluster

- Condor central manager
 - Dell Precision 350
 - Pentium 4 2.80 GHz
 - 512 Mb RAM
 - 120 Gb disk space
 - Dual Boot OS:
 - Red Hat Linux 8.0
 - Scientific Linux 3.0.9
- Run condor 7.0.4 with slc 3.0.9
 OS


- coLinux/Condor worker nodes
- Four PC's in Advanced/Modern Physics instructional laboratory
 - Received Physics Department Chair's permission to use before implementing.
 - These are primarily instructional computers!
- Dell Dimension 2400
- Pentium 4 2.8 GHz
- 512 MB RAM
- 33.6 Gb disk space
- Window XP Operating System

Installing the coLinux/Condor package

- Follow instructions on the OSCER web site:
 - http://www.oscer.ou.edu/CondorInstall/condor_colinux_howto.php
- Major steps (some details missing):
 - Download the coLinux/Condor file
 - · Unzip the file
 - Configure the Condor configuration files
 - More on this later
 - Modify the first.sh script file
 - Modify the sethostname file
 - Copy the script on the codor_colinux_howto.php page.
 - Save this file locally as condor_script.bat or equivalent name and modify
 - Set the size of physical RAM
 - Reserve the size of disk area for condor to run in
 - Modify for the local area connection for the ethernet connection
 - Modify the boot.ini file
 - Dell computers with recovery partition:
 - partition(1) must be changed to partition(2)
 - This is very important so as not to write over the boot sector!
 - Execute the condor_script.bat file:
 - Bring up DOS window
 - cd c:\condor\colinux3
 - Condor_script.bat >> nodeNameCondorInstall.Log.txt

Starting the coLinux/Condor System

- Reboot the computer
- Is coLinux running?
- Look for condor service
 - Start Button →
 - Control Panel (Classic) →
 - Administrative Tools →
 - Services
- Service is present and started.

- The OSCER coLinux/Condor package installs
 - Fedora Core release 6 (Zod)
 - Condor 6.8.4

Setting up the condor central manager

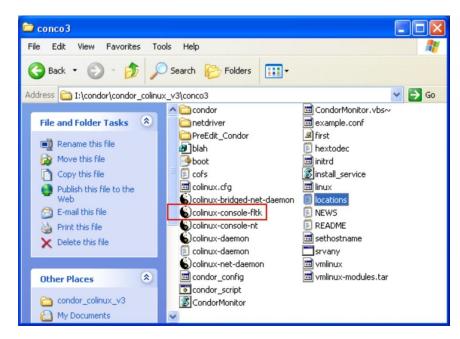
- Use Dell Precision 350
 - Pentium 4 2.80 GHz
 - slc 3.0.9
- Follow instructions at condor web site
 - http://www.cs.wisc.edu/condor
- Download rpm and install rpm
 - Make condor account
 - Modify the configuration files
 - More on this later.
 - Setup condor environment
 - Start up condor
 - %source /opt/condor/condor.sh
 - %<release_dir>/sbin/condor_master
 - See if condor is running:
 - %ps –ef | egrep condor
 - Look for condor processes

```
$ ps -ef | egrep condor
                             00:00:20 /opt/condor-7.0.4/sbin/condor master
condor 4923 1 0 Jan21?
condor 4960 4923 0 Jan21?
                               00:02:57 condor_collector -f
condor 4991 4923 0 Jan21?
                               00:01:26 condor negotiator -f
condor 4992 4923 0 Jan21?
                               00:00:00 condor schedd -f
condor 4993 4923 0 Jan21?
                               00:20:10 condor startd -f
root 4994 4992 0 Jan21?
                             00:00:00 condor_procd -A /tmp/condor-
lock.orion0.453315811305405/procd_pipe.SCHEDD-S 60 -C 502
root 30139 4993 0 Jan28?
                              00:00:00 condor procd -A /tmp/condor-
lock.orion0.453315811305405/procd_pipe.STARTD -S 60 -C 502
root 31740 4797 0 08:05?
                              00:00:00 sshd: condor [priv]
condor 31742 31740 0 08:06?
                                00:00:00 sshd: condor@pts/0
condor 31744 31742 0 08:06 pts/0 00:00:00 -tcsh
condor 31767 31744 0 08:06 pts/0 00:00:00 ps -ef
```

• condor 7.0.4

Condor Configure Files

- condor config files must be setup properly for the condor cluster to work.
- <release_dir>/etc/condor_config
- condor_config variables to define:
 - LOCAL_DIR
 - FLOCK_FROM
 - FLOCK_TO
 - HOSTALLOW_READ
 - HOSTALLOW_WRITE


- condor_config.local variables to define:
 - CONDOR_HOST
 - CONDOR_ADMIN
 - UID_DOMAIN
 - COLLECTOR_NAME

Initial Problems with the Cluster

- The coLinux/condor worker nodes were missing.
- Set up a second slc 3.0.9 node
- Remove possible coLinux/condor problems
 - Received some help from USA Academic Computing
 - Resolving network issues
- Trouble shooting greatly helped by locating condor log files.
- /opt/condorVersion/local.node/log/collectorLog
- Helped in resolving condor issues from network issues
 - Proper setup of condor config files on both machines
 - Add node on host allow
- Second node appeared on condor cluster
- Condor working!

Resolving coLinux/condor Issues

- On the Windows PC
- Start up a linux console
- "click" coLinux-console-fltk icon
 - Login
 - Startup condor
 - Look at the condor error log files
 - Separate network problems from condor problems
 - Correct problems in the condor config files
 - Eventually found:
 - coLinux IP address different than Windows IP address
 - No hostname defined for coLinux!

- USA DHCP only assigned IP address
- U of Oklahoma also assigned node name
- Solution: configure each PC:
 - Permanent IP address for coLinux PC
 - Configure with hostname

The coLinux/condor Cluster

- Nodes appear with condor_status command
- Cluster is stable

```
$ condor_status
```

Name	OpSys	Arch	State	Activity LoadA	v Mem	ActvtyTime	
ilb00500.con	dor.us LIN	IUX	INTEL	Unclaimed Idle	0.000	250 0+01:50):20
				Unclaimed Idle			
ilb00502.con	dor.us LIN	IUX	INTEL	Unclaimed Idle	0.000	250 0+00:00	:54
orion.physics	.usou LIN	UX	INTEL	Unclaimed Idle	0.020	499 0+00:50	:04

Total Owner Claimed Unclaimed Matched Preempting Backfill

```
INTEL/LINUX 4 0 0 4 0 0 0

Total 4 0 0 4 0 0
```

Testing the Cluster

- Wrote a small C++ benchmark program
 - currentHost.cc
 - Loop accessing the computer clock
 - Prints out time
- Use "standard universe"
- Must build the program to link to the condor libraries.
 - %condor_compile CC –o currentHost currentHost.cc
 - The job is controlled on the condor cluster with a condor command file
 - currentHost.cmd
 - This includes the number of jobs to submit
- To submit the condor jobs
- %condor_submit currentHost.cmd

Test Job Output

- The test job is called currentHost
- Output from the test job run on two nodes.

Max = 15000 | Modulo =

```
Max = 15000 | Modulo =
Date = 2010Jan28_22_13_58
Current Host: orion
Error getting MYHOST
Current Directory: /orion2/condor/CurrentHost2010Jan28A
Error getting CONDOR HOST
Error getting COLLECTOR_HOST
Error getting FULL HOST NAME
CONDOR SCRATCH DIR:/opt/condor-6.8.4/local.ilb00500/execute/dir 18805
last = 3
length of tempIn = 50
tempName = ilb00
Error getting _CONDOR_SLOT
        0 \text{ Time} = 0.0000e+00, \text{ rtime} = 2.0000e-02
      1500 Time = 0.0000e+00, rtime = 7.0000e-02
      3000 Time = 0.0000e+00 . rtime = 1.0000e-01
m = 4500 \text{ Time} = 0.0000e+00, rtime = 1.3000e-01
m = 6000 Time = 0.0000e+00, rtime = 2.2000e-01
m = 7500 Time = 0.0000e+00, rtime = 2.7000e-01
m = 9000 Time = 0.0000e+00 . rtime = 2.7000e-01
m = 10500 Time = 0.0000e+00, rtime = 3.8000e-01
m = 12000 \text{ Time} = 0.0000e+00, rtime = 4.1000e-01
m = 13500 \text{ Time} = 0.0000e+00, rtime = 4.7000e-01
```

```
Date = 2010Jan28 22 05 17
Current Host: orion
Error getting MYHOST
Current Directory: /orion2/condor/CurrentHost2010Jan28A
Error getting CONDOR HOST
Error getting COLLECTOR HOST
Error getting FULL_HOST_NAME
CONDOR_SCRATCH_DIR: /opt/condor-6.8.4/local.ilb00501/execute/dir_7418
last = 3
length of tempIn = 49
tempName = ilb00
Error getting _CONDOR_SLOT
        0 \text{ Time} = 0.0000e+00, rtime = 3.0000e-02
      1500 Time = 0.0000e+00, rtime = 5.0000e-02
      3000 Time = 0.0000e+00, rtime = 1.2000e-01
      4500 Time = 0.0000e+00, rtime = 1.7000e-01
      6000 Time = 0.0000e+00, rtime = 2.2000e-01
m = 7500 Time = 0.0000e+00, rtime = 2.8000e-01
m = 9000 Time = 0.0000e+00, rtime = 3.6000e-01
m = 10500 Time = 1.0000e+00, rtime = 4.1000e-01
m = 12000 \text{ Time} = 1.0000e+00 \text{ rtime} = 4.1000e-01
m = 13500 Time = 1.0000e+00, rtime = 5.1000e-01
```

1500

Future Plans

- Need to build programs that use the CERN libraries.
 - Root
- Need shared disk space to run in the "vanilla universe"
 - Programs do not have to link to the condor libraries.
- Need to upgrade the linux kernal to SL 5 release
 - Will do this after it is released by the University of Oklahoma
- Need to upgrade the condor version