

Minimum Bias and Underlying Event Working Group o6-07 September 2010

ALICE dN_{CH}/dη ANALYSIS FOR THE "COMMON PLOTS"

C. Zampolli

Outline

- INEL > o analysis
- Results at 900 GeV
- Outlook and Conclusions

INEL>0

- Defined as a new class of events...
 - Property Selecting the events with at least one particle in $|\eta| < 0.8$ and $p_T > p_{T, \, cut}$
- ...where the charged multiplicity pseudorapidity density is determined by the number of tracks in the same η and p_T range
 - Tracks in $|\eta|$ < 0.8 and $p_T > p_{T, cut}$
- p_{T, cut} set at 0.5, 1. GeV, for the common plots
- In addition, p_{T,cut} at o.15 GeV considered, as this is ALICE intrinsic p_{T,cutoff}

Previous Results from ALICE

- So far: results obtained counting the tracklets reconstructed in the ITS (6 layer silicon detector)
 - Using the 2 layers of the SPD detector
 - No p_T measurement (intrinsic cut at about 50 MeV)
- Now: full tracking in ALICE required
 - Using ITS + TPC
 - p_T measurement from 0.15 GeV

ALICE Tracking Efficiency

SPD physics efficiency for primaries (2009 configuration, 80% active)

ALICE full tracking, intrinsic p_T cutoff at 0.15 GeV

<u>Primary particles</u> = charged particles produced in the collision and their decay products excluding weak decays from strange particles

The Analysis

- Following the same method used for the previous dN_{ch}/dη measurements
- Basically: $\frac{dN_{ch}}{d\eta} = \frac{Tracks}{Events}$ to which
 - Track-to-particle correction
 - Track level
 - Vertex reconstruction correction
 - Track and event level
 - Trigger bias correction
 - Track and event level

have to be applied

From J.F. Grosse-Oetringhaus, Rencontres de Moriond, 14. – 19. March 2010

Some Numbers

Number of Events:

N. of events	p _T > 0.15 GeV	p _T > 0.5 GeV	p _T > 1. 0 GeV
Total: ~70 K	~50 K	~37 K	~16 K

Correction Factors:

Average correction factor	p _T > 0.15 GeV	p _T > 0.5 GeV	p _T > 1.0 GeV
Track correction	1.389	1.301	1.317
Event correction	1.071	1.122	1.204

Event Selection Efficiency

$$p_T > 0.15 \,\text{GeV}$$

$$p_T > 0.5 \,\text{GeV}$$

 $p_T > 1.0 \text{ GeV}$

Systematic Uncertainties

Uncertainty	p _T cut				
Officertaility	0.15 GeV	o.5 GeV	1.0 GeV		
MC Generator	-1.8%	-1.2%	+0.6%		
Track Selection Cuts	1.5%	0.9%	0.8%		
Particle Composition	1%	0.8%	0.5%		
Process Types	0.7%	0.3%	Negl.		
ITS Efficiency	0.3%	Negl.	Negl.		
TPC Efficiency	1.5%	0.6%	0.4%		
Secondary Particle Rejection	o.8%	0.5%	Negl.		
Detector Misalignment	Negl.	Negl.	Negl.		
Beam-gas events	Negl.	Negl.	Negl.		
Pile-Up events	Negl.	Negl.	Negl.		
Total	+2.6%	+1.4%	+1.3%		
Total	-3.1%	-1.9%	-1.1%		

C. Zampolli 09/06/2010, MB & UE

$dN_{ch}/d\eta$, $|\eta|<0.8$, $p_T>0.15$ GeV

ALICE			Pythia			Dhaist
	stat	syst	Perugia o	ATLAS CSC	D6T	Phojet
3.43	± 0.01	+ 0.08	3.01 ± 0.01	3.63 ± 0.01	2.85 ± 0.02	3.43 ± 0.01

$dN_{ch}/d\eta$, $|\eta|<0.8$, $p_T>0.5$ GeV

ALICE			Pythia			Dhoist
	stat	syst	Perugia o	ATLAS CSC	D6T	Phojet
1.76	± 0.01	+ 0.02	1.72	1.78	1.60	1.68

$dN_{ch}/d\eta$, $|\eta|<0.8$, $p_T>1.0$ GeV

ALICE		Pythia			Dhoist	
	stat	syst	Perugia o	ATLAS CSC	D6T	Phojet
1.04	± 0.01	+ 0.01	1.03	0.95	1.02	0.95

Results' Comparison

Summary and Conclusions

- A new event class definition has been introduced and studied
 - Event class: INEL>0_{|η|<0.8}, p_T > 0.15, 0.5, 1.0 GeV
 - Tracks: $|\eta| < 0.8$, $p_T > 0.15$, 0.5, 1.0 GeV
- The analysis has been performed in ALICE at $\sqrt{s} = 0.9 \text{ TeV}$
 - Analysis at $\sqrt{s} = 7$ TeV not yet approved
- Different MC seem to agree better with the data at different p_{T} cuts

Thanks to...

- H. Appelshaeuser
- A. Dainese
- M. Floris
- J.F. Grosse-Oetringhaus
- J. Otwinowski
- F. Noferini
- ...and many more...