Particle Production Studies at LHCb

Christopher Blanks
Imperial College
on behalf of the LHCb collaboration

6 September 2010
Minimum Bias and Underlying Event Working Group

Contents

- Introduction to LHCb: Tracking & Particle ID
- K_S production cross section
- Strange particle (V^0) ratios
- Proton ratios
- Summary

The LHCb detector in the point 8 cavern at CERN

The LHCb Experiment

A forward detector (2< η <5) for precision measurement of CP violation and rare B-decays

The LHCb Experiment

A forward detector (2< η <5) for precision measurement of CP violation and rare B-decays

LHCb Tracking

A forward detector ($2 < \eta < \frac{1}{2}$ CP violation and rare B-de

A completed VELO module before installation

Tracking $\delta p/p \approx 0.4\%$ with 95% reconstruction efficiency

VELO precision $\sigma(z) \approx 50$ (150) µm for Primary (Secondary) Vertex

LHCb Tracking

A forward detector ($2 < \eta < \frac{1}{2}$ CP violation and rare B-de

A completed VELO module before installation

VELO opened at \sqrt{s} = 0.9 TeV due to width of low energy beam (by 15 mm in 2009 & 10 mm in 2010)

Tracking $\delta p/p \approx 0.4\%$ with 95% reconstruction efficiency

VELO precision $\sigma(z) \approx 50$ (150) µm for Primary (Secondary)

Vertex

LHCb RICH Detectors

2 Ring Imaging Cherenkov (RICH) detectors distinguish charged particles by mass over a momentum range of 2 to ~100 GeV/c

K_S Production Cross Section

An ideal first measurement for LHCb, with high purity selection of $K_S \to \pi\pi$ requiring no particle identification

2 complimentary selections with average mass resolutions:

9.2 & **5.5** MeV/*c*²

Downstream selection

Luminosity Determination

The most precise LHC luminosity measurement is by LHCb

$$L = 2c n_1 n_2 f \cos^2 \theta \int \rho_1(x, y, z, t) \rho_2(x, y, z, t) dx dy dz dt$$

Frequency and # protons per bunch measured by LHC instruments

Bunch size measured using vertex spread, subtracting VELO resolution

Beam crossing angle measured from collision vertices in the VELO

For the K_S data set:

$$\mathcal{L}_{int} = 6.8 \pm 1.0 \ \mu b^{-1}$$

K_S Cross Section Systematics

Result *statistically limited* in some kinematic regions

The largest single error comes from the measurement of *bunch currents* in the integrated \mathcal{L} calculation

Source of uncertainty	uncorrelated	correlated
Yields N_i^{obs}		
- Data statistics	5 - 25 %	
- Signal extraction	1 - 5%	
 Beam-gas subtraction 		< 1 %
Efficiency correction $(\epsilon_i^{\text{trig/sel}} \ \epsilon_i^{\text{sel}})^{-1}$		
- MC statistics	1 - 5%	
- Track finding		6 - 17%
- Selection		4%
- Trigger		2%
$-p_{\rm T}$ and y shape within bin	0 - 20 %	
- Diffraction modelling		0 - 1 %
 Non-prompt contamination 		< 1 %
- Material interactions		< 1 %
Normalization $(L_{\text{int}})^{-1}$		
- Bunch currents		12%
– Beam widths		5%
– Beam positions		3%
– Beam angles		1 %
Sum in quadrature	6 - 28 %	16 - 23 %

K_S Cross Section Results

 K_S production peaks between 0.2 & 0.4 GeV/c of p_T The most consistent PYTHIA tuning tested was Perugia 0

K_S Cross Section Results

This first measurement at \sqrt{s} = 900 GeV also extends to higher rapidity & lower p_T than previous experiments

K_S Cross Section Results

This first measurement at \sqrt{s} = 900 GeV also extends to higher rapidity & lower p_T than previous experiments

Accepted for publication in Phys. Lett. B:

"Prompt K_S production in pp collisions at \sqrt{s} = 0.9 TeV"

arXiv:1008.3105v1 [hep-ex]

Ratio Measurements

Theoretical interest in ratios e.g.

- baryon number transport
- baryon vs. meson suppression in hadronisation

$$V^0$$
 ratios $\overline{\Lambda}/\Lambda$ $\overline{\Lambda}/K_S$ Only tracking & vertexing

Proton ratio
$$\bar{p}/p$$
 RICH particle identification

All abundant in minimum bias data

V^0 Selection

High-purity, prompt $K_S \& \Lambda$ samples selection based on a combination of impact parameters (IP)

$$\nu = lnIP^+ + lnIP^- - lnIP^{V^0}$$

 V^0 background seen in Armenteros-Podolanski variables

& removed with an invariant mass cut on the "wrong" daughter hypothesis

V^0 Analysis

Analysis carried out in bins of $V^0 p_T$ and rapidity, boost corrected for the beam crossing angle

Efficiency is estimated per bin with LHCb-tuned PYTHIA event generation and GEANT simulation for prompt, non-diffractive events

 $\Sigma_{\text{ancestors}} c \tau_{PDG} < 10^{-6} \text{ mm}$

PYTHIA Process ID ≠ 91, 92 or 93

Efficiencies are calculated after reweighting of Monte Carlo p_T distributions

V^0 Ratio Systematics

Ratios benefit from reduced systematic uncertainties since *absolute luminosity not required*

Remaining systematics relate to MC, data comparisons:

Uncertainties	Errors
p , π - nucleon interaction cross sections	~10%
V^0 production $\&$ interaction cross sections	~10%
LHCb material description	<10%
Λ transverse polarisation	<1%
Selection cuts	~1%
Ghost tracks	<2%
Acceptance asymmetries	~2%
Non-prompt contamination	<1%

Ratio	Total
$\overline{\Lambda}/\Lambda$	2%
$\overline{\Lambda}/K_S$	2-12%

Preliminary Results Λ/Λ

Another unique measurement at high rapidity with pp collisions at \sqrt{s} = 0.9 & 7 TeV

Measurements lie significantly lower than Perugia 0 expectation at \sqrt{s} = 0.9 TeV

Preliminary Results Λ/K_S

Baryon *vs.* meson production ratio measurement with pp collisions at \sqrt{s} = 0.9 & 7 TeV

Baryon suppression in hadronisation significantly lower than predicted at both energies

Proton Ratio

Protons are selected with RICH particle identification, comparing the likelihoods (DLL) of π & K to p

RICH particle identification calibrated with tracking-only selected samples of $K_S \to \pi^+\pi^-$, $\Lambda \to p\pi$ & tag-and-probe selected $\phi \to K^+K^-$

Cuts tuned for purity (90-95%) in MC in bins of $p_T \& \eta$, with selection efficiency measured in data

RICH Particle Identification

An event display from real data show "rings" projected on to RICH2's photon detector plane

Detector acceptance

Saturated track: particle hypotheses indistinguishable

Photons clearly favour the Kaon ring hypothesis

Ring distortions due to detector geometry

Uncorrected Charged Particle Ratios

Proton Ratio Systematics

RICH PID contributes the largest error, typically < 5% but increases due to statistically limited calibration samples in outer p_T , η bins

MC *interactions between p,* \overline{p} & *nucleons* in agreement with COMPASS data $\pm 20\%$ for momentum > 5 GeV/c

Contribution from *fake tracks* greatly reduced for protons associated to Cherenkov light but estimated contribution remains ~1%

Consistent results found from cross-checks using tighter cuts on track quality & RICH PID and between magnetic field polarities

Preliminary Results \bar{p}/p

Baryon number transport closer to predictions

Preliminary Results Comparison

Results at both beam energies compared in Δy show consistency, also with other experiments

$$\Delta y = y(beam) - y(\Lambda, p)$$

y(beam): 6.6 : \sqrt{s} = 0.9 TeV

8.3 : \sqrt{s} = 7 TeV

Preliminary Results Comparison

Results at both beam energies compared in **\Delta y** show consistency, also with other experiments

$$\Delta y = y(beam) - y(\Lambda, p)$$

y(beam): 6.6 : \sqrt{s} = 0.9 TeV

 $8.3:\sqrt{s}=7 \text{ TeV}$

Preliminary Results Comparison

Results at both beam energies compared in Δy show consistency, also with other experiments

$$\Delta y = y(beam) - y(\Lambda, p)$$

y(beam): $6.6 : \sqrt{s} = 0.9 \text{ TeV}$

8.3 : \sqrt{s} = 7 TeV

Summary

- K_S cross section published with 2009 data
- Preliminary results in 2010 for ratios of V^0 & protons
- Perugia 0 describes $\bar{p}/p \ \& \ \overline{\Lambda}/\Lambda$ well at high- but not at low energy and does not reproduce $\overline{\Lambda}/K_S$ data

Summary

- K_S cross section published with 2009 data
- Preliminary results in 2010 for ratios of V^0 & protons
- Perugia 0 describes $\bar{p}/p \& \bar{\Lambda}/\Lambda$ well at high- but not at low energy and does not reproduce $\bar{\Lambda}/K_S$ data

Other on-going analyses:

- Inclusive ϕ production
- Higher precision strangeness production
- Charged particle studies

Look out for new LHCb publications soon!