ATLAS Underlying Event study and an alternative Delta phi analysis

Urban BitencFreiburg University

Joint LHC Underlying Event and Minimum Bias workshop, 7th September 2010

Outline

- Underlying Event analysis
- Delta phi analysis, looking closer at Δφ distributions

Data and selection criteria

Data:

900 GeV: December 2010

7 TeV: March 30th - April 7th

EVENT SELECTION:

- MBTS_1 trigger
- reconstructed vertex
- no second vertex with 4 or more tracks
- at least 2 selected tracks

TRACK SELECTION:

- $p_{_{\rm T}} > 500 \text{ MeV}$
- $|\eta|$ < 2.5, 2.0, 1.0
- at least 1 Pixel hit
- B-layer hit required if it is expected
- at least 6 SCT hits
- $|d_0| < 1.5$ mm, $|z_0 \sin \theta| < 1.5$ mm
- for $p_T > 10$ GeV: χ^2 probability > 0.01

Definition: Delta phi, $\Delta \phi$

Track based UE study

Track with the highest p_T tells the direction of the hard scatter.

Why?

- Best use of the limited statistics.
- Easier to correct back to hadron level.

Is this good?

Yes, it is: leading track is very often included in the leading jet.

Leading track: $p_T > 1.0 \text{ GeV}$

ATLAS-CONF-2010-081

Corrected to the hadron level

- The distributions are corrected back to the hadron level and can be directly compared with the output of MC generators
- Event level corrections:
 - trigger inefficiency
 - vertex inefficiency
 - no particle with $p_T > 1.0$ GeV reconstructed
- Track level correction: efficiency, non-primaries, outside kinematic range
- Unfolding factor: account for resolution effects (bin migrations)

Underlying Event - Results

14 slides of plots:

$$< N_{ch} >$$

$$vs. p_T^{lead}$$

$$<\Sigma p_T>$$

Std. Dev.
$$\Sigma p_T$$
 vs. p_T^{lead}

$$< p_T >$$

$$< p_T >$$

 $N_{non-leading\ tracks}$ vs. $\Delta \phi$

<N_{ch}> in transverse region

- All tunes are too low
- Best tunes are 10%-15% below the data

"Best tune":
estimated by eye,
sometimes difficult
to decide;
DON'T TAKE TOO
SERIOUSLY

U. Bitenc: UE and Delta phi at ATLAS

<N_{ch}> in toward and away

generally a better agreement between data and MC than in the transverse region

<N_{ch}>: ratio 7 TeV / 900 GeV

- Pythia ATLAS MC09 tune: comparison of 900 GeV and 7 TeV plots
- the tune is below the data, but gets the ratio quite correct (only slightly underestimates)

$\langle \Sigma p_T \rangle$ in transverse region

- very similar to the $\langle N_{ch} \rangle$ plots
- best tunes 10% below the data

$\langle \Sigma p_T \rangle$ in toward and away reg.

generally a better agreement between data and MC than in the transverse region

$\langle \Sigma p_T \rangle$: ratio 7 TeV / 900 GeV

 Pythia ATLAS MC09 tune: underestimates the data, but gets the increase from 900 GeV to 7 TeV roughly right.

Std. Deviations in transv.r.

MCs do a reasonably good job

<p_> in transverse region

good description by most tunes: mostly within 5% from the data

U. Bitenc: UE and Delta phi at ATLAS

<p_> in toward and away reg.

 Here tunes tend to be higher than the data.

>: ratio 7 TeV / 900 GeV

 A good description of the ratio by Pythia tune ATLAS MC09

p_r [GeV]

$\langle p_T \rangle$ vs. N_{ch} in transverse r.

 Tunes ATLAS MC09 and Perugia0 are too high, others are fine

<p_> vs. N_{ch} in toward & away

the leading track is included, that's why you see the spike in "toward"

• ATLAS MC09 and Perugia0 are too high, others are fine

 The shapes are different than in data

<p_T> vs. N_{ch}: ratio 7 TeV / 900 GeV

 Here the ratios between the two energies are slightly worse described

Angular distributions - $\Delta \phi$

∆φ shapes

 are not well
 described by

 MC tunes

The next part of the talk will give more insight into the Δφ shapes

Angular distributions: Δφ

- Take a closer look into the Δφ shape
- Define variables in a way to minimise the systematic error
- Systematic uncertainty small a few percent in the most sensitive bins
- Three eta ranges: $|\eta| < 1.0$, 2.0, 2.5
- ATLAS-CONF-2010-082

Δφ crest shape

Δφ is the ABSOLUTE VALUE of the angle between the tracks

- This is one of the two observables in this measurement.
- Tests the shape of the event: systematic uncertainties are greatly reduced!

Definition: Same side, Opposite side

U. Bitenc: UE and Delta phi at ATLAS

"Same minus opposite"

- · This is the second observable in this measurement.
- Tests the shape of the event: systematic uncertainties are greatly reduced!

MC: generated vs. reconstructed $\Delta \phi$

- Without applying any corrections the reconstructed distributions agree reasonably well with the generated ones
- For $|\eta| < 1.0$ these discrepancies are even smaller

Corrections applied

- Correct for tracking efficiency and presence of non-primary tracks
- Correct for lost leading tracks

→ Compare the corrected distributions directly to the output of MC generators

Results: 900 GeV

• $|\eta| < 1.0$: MC descriptions are \sim OK

- $|\eta|$ <2.5: MC descriptions are OFF
- This is true for all the tunes (no tune describes the shapes)

Results: 7 TeV

- MCs are ~OK for |η|<1.0, but not for |η|<2.5
- Shapes for 7
 TeV different
 than for 900
 GeV
- At 7 TeV
 tunes are
 closer
 together, but
 not closer to
 the data

color reconnections, $|\eta| < 2.5$

- MCs are ~OK for |η|<1.0, but not for |η|<2.5
- Shapes for 7
 TeV different
 than for 900
 GeV
- At 7 TeV
 tunes are
 closer
 together, but
 not closer to
 the data

p_{τ} ordered tunes, $|\eta| < 2.5$

- At 7 TeV
 tunes are
 closer
 together, but
 not closer to
 the data
- Sensitive to shower parameters
- P HARD good for "crest" at 900 GeV, but not for 7 TeV "Same minus Opposite"

Conclusions

- Track based UE study results shown:
 - pre-LHC MCs too low in the transverse region, but better in forward and away
- Δφ shape studied using new variables
 - variables robust by construction
 - Pythia tunes fail to describe Δφ distributions